Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CSDA.2020.106961 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The issue of model-based clustering of longitudinal data has attracted increasing attention in past two decades. Finite mixtures of Student's-t linear mixed-effects (FM-tLME) models have been considered for implementing this task especially when data contain extreme observations. This paper presents an extended finite mixtures of Student's-t linear mixed-effects (EFM-tLME) model, where the categorical component labels are assumed to be influenced by the observed covariates. As compared with the naive methods assuming the mixing proportions to be fixed but unknown, the proposed EFM-tLME model exploits a logistic function to link the relationship between the prior classification probabilities and the covariates of interest. To carry out maximum likelihood estimation, an alternating expectation conditional maximization (AECM) algorithm is developed under several model reduction schemes. The technique for extracting the information-based standard errors of parameter estimates is also investigated. The proposed method is illustrated using simulation experiments and real data from an AIDS clinical study. (C) 2020 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Yang, Yu-Chen | - |
Natl Chung Hsing Univ - Taiwán
National Chung Hsing University - Taiwán |
| 2 | Lin, Tsung-I | - |
Natl Chung Hsing Univ - Taiwán
China Med Univ - Taiwán National Chung Hsing University - Taiwán China Medical University Taichung - Taiwán China Medical University - Taiwán |
| 3 | CASTRO-CEPERO, LUIS MAURICIO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Chilean Govt - Chile Núcleo Milenio Centro para el Descubrimiento de Estructuras en Datos Complejos - Chile Millennium Nucleus Center for the Discovery of Structures in Complex Data - Chile |
| 4 | Wang, Wan-Lun | - |
Feng Chia Univ - Taiwán
Feng Chia University - Taiwán |
| Fuente |
|---|
| Ministerio de Economía, Fomento y Turismo |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Ministerio de Economía, Fomento y Turismo, Chile |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| grant Fondecyt, Chile |
| Ministry of Science and Technology, Taiwan |
| Ministry of Science and Technology of Taiwan |
| Millennium Nucleus Center |
| Ministerio de EconomÃa, Fomento y Turismo |
| Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Chile, Grant "Millennium Nucleus Center for the Discovery of Structures in Complex Data'' from the Chilean government |
| Agradecimiento |
|---|
| The authors gratefully acknowledge the Editors, the Associate Editor and two anonymous referees for their comments and suggestions that greatly improved the quality of this paper. T.I. Lin and W.L. Wang would like to acknowledge the support of the Ministry of Science and Technology of Taiwan under Grant Nos. MOST 107-2118-M-005-002-MY2 and MOST 107-2628-M-035-001-MY3. L.M. Castro acknowledges support from Grant FONDECYT, Chile 1170258 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Chile, Grant ``Millennium Nucleus Center for the Discovery of Structures in Complex Data'' from the Chilean government. |
| The authors gratefully acknowledge the Editors, the Associate Editor and two anonymous referees for their comments and suggestions that greatly improved the quality of this paper. T.I. Lin and W.L. Wang would like to acknowledge the support of the Ministry of Science and Technology of Taiwan under Grant Nos. MOST 107-2118-M-005-002-MY2 and MOST 107-2628-M-035-001-MY3 . L.M. Castro acknowledges support from Grant FONDECYT, Chile 1170258 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Chile , Grant “Millennium Nucleus Center for the Discovery of Structures in Complex Data” from the Chilean government. |