Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVB.101.205425 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Magnonic excitations in the two-dimensional (2D) van der Waals (vdW) ferromagnet chromium triiodide (CrI3) are studied. We find that bulk magnons exhibit a nontrivial topological band structure without the need for Dzyaloshinskii-Moriya interaction. This is shown in vdW heterostructures, consisting of single-layer CrI3 on different 2D materials such as MoTe2, HfS2, and WSe2. We find numerically that the proposed substrates substantially modify the out-of-plane magnetic anisotropy on each sublattice of the CrI3 subsystem. The induced staggered anisotropy, combined with a proper band inversion, leads to the opening of a topological gap of the magnon spectrum. Since the gap is opened nonsymmetrically at the K+ and K- points of the Brillouin zone, an imbalance in the magnon population between these two valleys can be created under a driving force. This phenomenon has a close analogy to the so-called valley Hall effect and is thus termed the magnon valley Hall effect. In linear response to a temperature gradient, we quantify this effect by the evaluation of the temperature dependence of the magnon thermal Hall effect. These findings open a different avenue by adding the valley degrees of freedom besides the spin in the study of magnons.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hidalgo-Sacoto, R. | - |
Yachay Tech - Ecuador
Yachay University for Experimental Technology and Research (Yachay Tech) - Ecuador |
| 2 | GONZALEZ-VALDES, RAFAEL IGNACIO | Hombre |
Universidad Mayor - Chile
|
| 3 | VOGEL-MATAMALA, EUGENIO EMILIO | Hombre |
Universidad de La Frontera - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 4 | ALLENDE-PRIETO, SEBASTIAN EDUARDO | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Santiago de Chile - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 5 | MELLA-RIQUELME, JOSE DANIEL | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Chile - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 6 | CARDENAS-CARVAJAL, CESAR ANTONIO | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Chile - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 7 | TRONCOSO-CONA, ROBERTO ENRIQUE | Hombre |
Norwegian Univ Sci & Technol - Noruega
Norges Teknisk-Naturvitenskapelige Universitet - Noruega |
| 8 | MUNOZ-SAEZ, FRANCISCO JAVIER | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Chile - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| supercomputing infrastructure of the NLHPC |
| European Union's Horizon 2020 research and innovation programme |
| CONICYT Doctoral Fellowship |
| CONICYT PIA/Anillo |
| Horizon 2020 Framework Programme |
| Norges Forskningsrad |
| Center for the Development of Nanoscience and Nanotechnology CEDENNA |
| Norges Forskningsråd |
| Research Council of Norway through is Centres of Excellence funding scheme |
| Agradecimiento |
|---|
| This work was partially funded by Fondecyt Grants No. 1190036 (E.E.V.), No. 1191353 (F.M.), No. 11180557 (R.I.G.), No. 1200867 (S.A.), and No. 3200697(J.D.M.); Conicyt doctoral fellowship Grant No. 21151207 (J.D.M.); the Center for the Development of Nanoscience and Nanotechnology CEDENNA AFB180001; the supercomputing infrastructure of the NLHPC (ECM-02); and Conicyt PIA/Anillo ACT192023 (F.M.). R.E.T. acknowledges the support from the European Union's Horizon 2020 Research and Innovation Programme under Grant No. DLV-737038 "TRANSPIRE" and the Research Council of Norway through is Centres of Excellence funding scheme, Project No. 262633, "QuSpin." The authors thank L. E. F. Foa Torres for fruitful discussion. |
| This work was partially funded by Fondecyt Grants No. 1190036 (E.E.V.), No. 1191353 (F.M.), No. 11180557 (R.I.G.), No. 1200867 (S.A.), and No. 3200697(J.D.M.); Conicyt doctoral fellowship Grant No. 21151207 (J.D.M.); the Center for the Development of Nanoscience and Nanotechnology CEDENNA AFB180001; the supercomputing infrastructure of the NLHPC (ECM-02); and Conicyt PIA/Anillo ACT192023 (F.M.). R.E.T. acknowledges the support from the European Union's Horizon 2020 Research and Innovation Programme under Grant No. DLV-737038 “TRANSPIRE” and the Research Council of Norway through is Centres of Excellence funding scheme, Project No. 262633, “QuSpin.” The authors thank L. E. F. Foa Torres for fruitful discussion. |