Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1371/JOURNAL.PONE.0229226 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In medicine, a misdiagnosis or the absence of specialists can affect the patient's health, leading to unnecessary tests and increasing the costs of healthcare. In particular, the lack of specialists in otolaryngology in third world countries forces patients to seek medical attention from general practitioners, whom might not have enough training and experience for making correct diagnosis in this field. To tackle this problem, we propose and test a computer-aided system based on machine learning models and image processing techniques for otoscopic examination, as a support for a more accurate diagnosis of ear conditions at primary care before specialist referral; in particular, for myringosclerosis, earwax plug, and chronic otitis media. To characterize the tympanic membrane and ear canal for each condition, we implemented three different feature extraction methods: color coherence vector, discrete cosine transform, and filter bank. We also considered three machine learning algorithms: support vector machine (SVM), k-nearest neighbor (k-NN) and decision trees to develop the ear condition predictor model. To conduct the research, our database included 160 images as testing set and 720 images as training and validation sets of 180 patients. We repeatedly trained the learning models using the training dataset and evaluated them using the validation dataset to thus obtain the best feature extraction method and learning model that produce the highest validation accuracy. The results showed that the SVM and k-NN presented the best performance followed by decision trees model. Finally, we performed a classification stage -i.e., diagnosis- using testing data, where the SVM model achieved an average classification accuracy of 93.9%, average sensitivity of 87.8%, average specificity of 95.9%, and average positive predictive value of 87.7%. The results show that this system might be used for general practitioners as a reference to make better decisions in the ear pathologies diagnosis.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Viscaino, Michelle | Mujer |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Maass, Juan C. | Hombre |
Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile Hospital Clínico de la Universidad de Chile - Chile Hospital Clínico Universidad de Chile - Chile |
| 3 | DELANO-REYES, PAUL HINCKLEY | Hombre |
Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile Hospital Clínico de la Universidad de Chile - Chile Hospital Clínico Universidad de Chile - Chile |
| 4 | TORRENTE-AVENDANO, MARIELA CLAUDIA | Mujer |
Hosp Clin Univ Chile - Chile
Hospital Clínico de la Universidad de Chile - Chile Universidad de Chile - Chile Hospital Clínico Universidad de Chile - Chile |
| 5 | Stott, Carlos | Hombre |
Hosp Clin Univ Chile - Chile
Hospital Clínico de la Universidad de Chile - Chile Universidad de Chile - Chile Hospital Clínico Universidad de Chile - Chile |
| 6 | AUAT-CHEEIN, FERNANDO ALFREDO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| FONDECYT |
| CONICYT-PCHA/Doctorado Nacional |
| CONICYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| CONICYT-PCHA/Doctorado |
| Fundacion Guillermo Puelma |
| DOCTORADO |
| Proyecto ICM |
| Agradecimiento |
|---|
| The research was founded by CONICYT FB0008 to FAC, CONICYT-PCHA/Doctorado Nacional/2018-21181420 to MV, Fundacion Guillermo Puelma to JCM, Fondecyt 1161155, Proyecto ICM P09-015F and Fundacion Guillermo Puelma to PHD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
| The research was founded by CONICYT FB0008 to FAC, CONICYT-PCHA/Doctorado Nacional/2018-21181420 to MV, Fundación Guillermo Puelma to JCM, Fondecyt 1161155, Proyecto ICM P09-015F and Fundación Guillermo Puelma to PHD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |