Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake
Indexado
WoS WOS:000537625600003
Scopus SCOPUS_ID:85084381787
DOI 10.1016/J.EPSL.2020.116292
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



After large earthquakes at subduction zones, the plate interface continues moving due to mostly frictional afterslip or simply afterslip processes. Below approximately 60km depth, the seismic moment release at the plate interface is quite small indicating that the shear strength is low and stable sliding is the prevailing process. This agrees with the lack of significant interseismic locking at deeper segments (>60km) resulting from the inversion of geodetic data and thus low afterslip can be expected. However, inversion models that employ linear viscoelastic mantle rheology and an elastic crust result in significant afterslip at depths >60km. In this paper, we present a combination of a 3D forward geomechanical model with power-law rheology that simulates postseismic relaxation with dislocation creep processes in the crust and upper mantle and an afterslip inversion. We estimate the cumulative viscoelastic relaxation and the afterslip distribution for the first six years following the 2010 M-w 8.8 Maule earthquake in Chile. The cumulative afterslip distribution is obtained from the inversion of the residual surface displacements between the observed displacements from the continuous GPS (cGPS) and the ones from the forward modelling. We investigate five simulations, four with different dislocation creep parameters for the crust, slab, and upper mantle and one with elastic properties for the crust and slab, and a linear viscoelastic upper mantle for comparison. Our preferred simulation considers a weak crust since it shows the best fit to the cumulative cGPS postseismic displacements, a good fit to the time-series, and, in particular, a good spatial correlation between afterslip and aftershock activity. In this simulation, most of the viscoelastic relaxation occurs in the continental lower crust beneath the volcanic arc due to dislocation creep processes. The resulting afterslip pattern from the inversion is reduced at depths >60km, which correlates to the low cumulative seismic moment that is released from aftershocks at these depths. Furthermore, the cumulative afterslip moment release from this simulation corresponds to 10% of the main shock in six years, which is approximately half of the moment release that results from models with an elastic crust and linear viscosity in the upper mantle. We conclude that an integrated analysis by considering power-rheology with dislocation creep processes in the continental crust and upper mantle along with aftershock activity may be used to constrain location and magnitude postseismic relaxation processes better. (c) 2020 Elsevier B.V. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geochemistry & Geophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Pena, Carlos Hombre Helmholtz Ctr Potsdam - Alemania
FREE UNIV BERLIN - Alemania
Deutsches GeoForschungsZentrum (GFZ) - Alemania
Freie Universität Berlin - Alemania
2 Heidbach, Oliver Hombre Helmholtz Ctr Potsdam - Alemania
Deutsches GeoForschungsZentrum (GFZ) - Alemania
3 MORENO-SWITT, MARCOS Hombre Universidad de Concepción - Chile
Núcleo Milenio el Ciclo Sísmico a lo largo de Zonas de Subducción - Chile
4 Bedford, Jonathan Hombre Helmholtz Ctr Potsdam - Alemania
Deutsches GeoForschungsZentrum (GFZ) - Alemania
5 Ziegler, Moritz Hombre Helmholtz Ctr Potsdam - Alemania
Deutsches GeoForschungsZentrum (GFZ) - Alemania
6 TASSAR-ODDO, ANDRES Hombre Universidad de Concepción - Chile
Núcleo Milenio el Ciclo Sísmico a lo largo de Zonas de Subducción - Chile
7 Oncken, Onno Hombre Helmholtz Ctr Potsdam - Alemania
FREE UNIV BERLIN - Alemania
Deutsches GeoForschungsZentrum (GFZ) - Alemania
Freie Universität Berlin - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 8.33 %
Citas No-identificadas: 91.67 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 8.33 %
Citas No-identificadas: 91.67 %

Financiamiento



Fuente
FONDECYT
CONICYT/FONDAP
Anillo
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Millennium Nucleus
Deutscher Akademischer Austauschdienst
German Academic Exchange Service (DAAD)
Comisión Nacional de Investigación Científica y Tecnológica
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias
Helmholtz Association
CONICYT-BECAS
National Commission for Scientific and Technological Research (CONICYT-Becas Chile)
Initiative and Networking Fund of the Helmholtz Association through the project "Advanced Earth System Modelling Capacity (ESM)"

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Carlos Pena would like to thank the scholarship granted to him by both the German Academic Exchange Service (DAAD) and the National Commission for Scientific and Technological Research (CONICYT-Becas Chile). Marcos Moreno acknowledges support from FONDECYT 1181479, the Millennium Nucleus NC160025, ANILLO ACT192169, and CONICYT/FONDAP 15110017. This work has received funding from the Initiative and Networking Fund of the Helmholtz Association through the project "Advanced Earth System Modelling Capacity (ESM)". All data used are properly cited in the reference list, figures, and tables. We would like to thank the Editor Jean-Philippe Avouac, Sylvain Barbot and one anonymous reviewer for their insightful and constructive comments and suggestions.
Carlos Pe?a would like to thank the scholarship granted to him by both the German Academic Exchange Service (DAAD) and the National Commission for Scientific and Technological Research (CONICYT-Becas Chile). Marcos Moreno acknowledges support from FONDECYT 1181479, the Millennium Nucleus NC160025, ANILLO ACT192169, and CONICYT/FONDAP 15110017. This work has received funding from the Initiative and Networking Fund of the Helmholtz Association through the project ?Advanced Earth System Modelling Capacity (ESM)?. All data used are properly cited in the reference list, figures, and tables. We would like to thank the Editor Jean-Philippe Avouac, Sylvain Barbot and one anonymous reviewer for their insightful and constructive comments and suggestions.

Muestra la fuente de financiamiento declarada en la publicación.