Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00382-020-05231-4 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
General circulation models (GCMs) allow the analysis of potential changes in the climate system under different emissions scenarios. However, their spatial resolution is too coarse to produce useful climate information for impact/adaptation assessments. This is especially relevant for regions with complex orography and coastlines, such as in Chile. Downscaling techniques attempt to reduce the gap between global and regional/local scales; for instance, statistical downscaling methods establish empirical relationships between large-scale predictors and local predictands. Here, statistical downscaling was employed to generate climate change projections of daily maximum/minimum temperatures and precipitation in more than 400 locations in Chile using the analog method, which identifies the most similar or analog day based on similarities of large-scale patterns from a pool of historical records. A cross-validation framework was applied using different sets of potential predictors from the NCEP/NCAR reanalysis following the perfect prognosis approach. The best-performing set was used to downscale six different CMIP5 GCMs (forced by three representative concentration pathways, RCPs). As a result, minimum and maximum temperatures are projected to increase in the entire Chilean territory throughout all seasons. Specifically, the minimum (maximum) temperature is projected to increase by more than 2 degrees C (6 degrees C) under the RCP8.5 scenario in the austral winter by the end of the twenty-first century. Precipitation changes exhibit a larger spatial variability. By the end of the twenty-first century, a winter precipitation decrease exceeding 40% is projected under RCP8.5 in the central-southern zone, while an increase of over 60% is projected in the northern Andes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Araya-Osses, Daniela | Mujer |
Universidad de Chile - Chile
Bionostra Chile Res Fdn - Chile Bionostra Chile Research Foundation - Chile |
| 2 | Casanueva, Ana | - |
MeteoSwiss - Suiza
Univ Cantabria - España Federal Office of Meteorology and Climatology MeteoSwiss - Suiza Universidad de Cantabria - España |
| 3 | Roman-Figueroa, Celian | - |
Bionostra Chile Res Fdn - Chile
Universidad de La Frontera - Chile Bionostra Chile Research Foundation - Chile |
| 4 | Uribe, Jose M. | Hombre |
Universidad de Chile - Chile
|
| 4 | URIBE-MENESES, JUAN MANUEL | Hombre |
Universidad de Chile - Chile
|
| 5 | PANEQUE-CORRALES, MANUEL GILBERTO | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Dirección General de Aguas |
| Dirección Meteorológica de Chile |
| National Oceanic and Atmospheric Administration |
| Instituto de Investigaciones Agropecuarias de Chile |
| Centro de Estudios Avanzados en Zonas Áridas |
| Office of AIDS Research |
| Direction Générale de l’Armement |
| Agroenergia Ingenieria Genetica S.A |
| Agroenergia Ingenieria Genetica S.A. |
| Earth System Research Laboratories |
| AGROMET INIA |
| Explorador Climático Centro de Ciencias del Clima y la Resiliencias |
| Agradecimiento |
|---|
| This work was funded by Agroenergía Ingeniería Genética S.A. The authors thank Dirección General de Aguas (DGA), Dirección Meteorológica de Chile (MeteoChile), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Red Agrometeorológica del Instituto de Investigaciones Agropecuarias de Chile (AGROMET INIA), and Explorador Climático Centro de Ciencias del Clima y la Resiliencias (CR2) for providing the observed data. We would also like to thank NOAA/OAR/ESRL PSD for their NCEP Reanalysis data (https://www.esrl.noaa.gov/psd/), as well as the Woods Hole Oceanographic Institution (Woods Hole, MA, USA) for providing the CMIP5 model output data (https://cmip5.whoi.edu/). We also thank the code developers of the climate4R libraries and Dr. Sixto Herrera (University of Cantabria) for his valuable technical support. We are also grateful to two anonymous reviewers who helped to improve the original version of the manuscript. |