Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Decoupled model -based real-time hybrid simulation with multi -axial load and boundary condition boxes
Indexado
WoS WOS:000546584500002
Scopus SCOPUS_ID:85086407648
DOI 10.1016/J.ENGSTRUCT.2020.110868
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Real-time hybrid simulation (RTHS) is a cost and space efficient alternative to shake table testing for seismic assessment of structural systems. In this method, complete structural systems are partitioned into numerical and physical components and tested at real earthquake velocities. Well -understood components of the structure are modeled in finite -element numerical models. Meanwhile, the physical substructure, which often contains the highly nonlinear and numerically burdensome components is fabricated and tested in a laboratory facility. Testing at real earthquake velocities is useful to obtain nonlinear rate -dependent material behaviors. Realistic reproduction of seismic conditions for structural assessment has required researchers to develop multi -axial RTHS capabilities. In such developments, multiple actuators are arranged at the boundary condition with the physical specimen to impose realistic displacements and rotations. But, varying degrees of dynamic coupling exist between the actuators in multi -axial boundary conditions. Controllers and kinematic transformations are developed for the tracking action of the actuators to compensate for the amplitude and phase discrepancies between target and measured displacement signals, otherwise stability issues are likely to result. In this paper, a multi -axial framework is introduced for RTHS testing, using a Load and Boundary Condition Box (LBCB) at the University of Illinois at Urbana -Champaign. The previously developed multi -axial RTHS framework for the LBCBs compensates for actuator dynamics in Cartesian coordinates; this approach lacked stability robustness when testing stiff specimens. The distinguishing feature of the proposed framework is that tracking compen- sation is executed in the actuator coordinates. The differences between the previous and proposed multi -axial RTHS frameworks are explored in detail herein. This paper presents the components of the framework and the describes a six -degree -of -freedom moment frame RTHS experiment. Finally, experimental results are discussed and directions for future research efforts are considered.

Revista



Revista ISSN
Engineering Structures 0141-0296

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Scopus
Civil And Structural Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Najafi, Amirali - UNIV ILLINOIS - Estados Unidos
University of Illinois at Urbana-Champaign - Estados Unidos
University of Illinois Urbana-Champaign - Estados Unidos
The Grainger College of Engineering - Estados Unidos
2 Fermandois, Gaston A. Hombre Universidad Técnica Federico Santa María - Chile
3 Spencer Jr., Billie F. Mujer UNIV ILLINOIS - Estados Unidos
University of Illinois at Urbana-Champaign - Estados Unidos
University of Illinois Urbana-Champaign - Estados Unidos
The Grainger College of Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
Universidad Técnica Federico Santa María
Comisión Nacional de Investigación Científica y Tecnológica
Universidad Técnica Federico Santa María
Universidad Tecnica Federico Santa Maria through Faculty Development Scholarship
Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering
CONICYT - Chile through Becas Chile Scholarship

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The second author gratefully acknowledges the support of CONICYT - Chile through Becas Chile Scholarship No. 72140204, the Universidad Tecnica Federico Santa Maria through Faculty Development Scholarship No. 208-13, and funding from the Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering.
The second author gratefully acknowledges the support of CONICYT - Chile through Becas Chile Scholarship No. 72140204 , the Universidad Tecnica Federico Santa Maria through Faculty Development Scholarship No. 208-13, and funding from the Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering.

Muestra la fuente de financiamiento declarada en la publicación.