Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



PARTITIONING EDGE-COLORED HYPERGRAPHS INTO FEW MONOCHROMATIC TIGHT CYCLES
Indexado
WoS WOS:000546889200024
Scopus SCOPUS_ID:85089852407
DOI 10.1137/19M1269786
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Confirming a conjecture of Gyarfas, we prove that, for all natural numbers k and r, the vertices of every r-edge-colored complete k-uniform hypergraph can be partitioned into a bounded number (independent of the size of the hypergraph) of monochromatic tight cycles. We further prove that, for all natural numbers p and r, the vertices of every r-edge-colored complete graph can be partitioned into a bounded number of pth powers of cycles, settling a problem of Elekes, Soukup, Soukup, and Szentmiklossy [Discrete Math., 340 (2017), pp. 2053-2069]. In fact we prove a common generalization of both theorems which further extends these results to all host hypergraphs of bounded independence number.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 BUSTAMANTE-FRANCO, SEBASTIAN FELIPE Hombre Universidad de Chile - Chile
2 Corsten, Jan - London Sch Econ & Polit Sci - Reino Unido
London School of Economics and Political Science - Reino Unido
3 Frankl, Nora Mujer London Sch Econ & Polit Sci - Reino Unido
MIPT - Rusia
London School of Economics and Political Science - Reino Unido
Moscow Institute of Physics and Technology - Rusia
4 Pokrovskiy, Alexey Hombre UNIV LONDON - Reino Unido
Birkbeck, University of London - Reino Unido
School of Business, Economics and Informatics - Reino Unido
5 Skokan, J. Hombre London Sch Econ & Polit Sci - Reino Unido
UNIV ILLINOIS - Estados Unidos
London School of Economics and Political Science - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
National Research, Development and Innovation Office
Ministry of Education and Science of the Russian Federation
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
National Research, Development, and Innovation Office, NKFIH grant
LSE Ph.D. studentship
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
National Research, Development, and Innovation Office

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The second and third authors were supported by an LSE Ph.D. studentship. The third author received financial support from the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926 and was partially supported by the National Research, Development, and Innovation Office, NKFIH grant K119670. The fifth author was partially supported by National Science Foundation grant DMS-1500121.
∗Received by the editors June 21, 2019; accepted for publication (in revised form) April 6, 2020; published electronically June 29, 2020. https://doi.org/10.1137/19M1269786 Funding: The second and third authors were supported by an LSE Ph.D. studentship. The third author received financial support from the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926 and was partially supported by the National Research, Development, and Innovation Office, NKFIH grant K119670. The fifth author was partially supported by National Science Foundation grant DMS-1500121. †Departamento de Ingeniería Matemática, Universidad de Chile, Beauchef 851, Santiago, Chile (sebustam@gmail.com). ‡London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK (j.corsten@lse.ac.uk). §London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK, and Laboratory of Combinatorial and Geometric Structures at MIPT, Moscow, Russia (n.frankl@lse.ac.uk). ¶Department of Economics, Mathematics, and Statistics, Birkbeck College, University of London, London WC1E 7HX, UK (alja123@gmail.com, dr.alexey.pokrovskiy@gmail.com). ‖London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK, and Department of Mathematics, University of Illinois, Urbana, IL 61801 (j.skokan@lse.ac.uk).

Muestra la fuente de financiamiento declarada en la publicación.