Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/202038035 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Results. We find a varying correlation between the photometric variability and RV jitter as function of time intervals between the TESS photometric observation and HARPS RV. As the time intervals of the observations considered for the analysis increases, the correlation value and significance becomes smaller and weaker, to the point that it becomes negligible. We also find that for stars with a photometric variability above 6.5 ppt the correlation is significantly stronger. We show that such a result can be due to the transition between the spot-dominated and the faculae-dominated regime. We quantified the correlations and updated the relationship between chromospheric Ca II H & K activity indicator log(R '(HK)) and RV jitter.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hojjatpanah, S. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 2 | Oshagh, M. | - |
Univ Porto - Portugal
Inst Astrofis Canarias IAC - España Georg August Univ - Alemania Universidade do Porto, Centro de Astrofísica - Portugal Instituto Astrofisico de Canarias - España Universität Göttingen - Alemania Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal Georg-August-Universitat Gottingen - Alemania |
| 3 | Gu, P. -G. | Hombre |
Univ Porto - Portugal
ESO - Chile Universidade do Porto, Centro de Astrofísica - Portugal European Southern Observatory Santiago - Chile Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal European Southern Observ - Chile |
| 4 | Santos, Nuno C. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 5 | Amazo-Gomez, E. M. | - |
Georg August Univ - Alemania
Max Planck Inst Sonnensyst Forsch - Alemania Universität Göttingen - Alemania Max Planck Institute for Solar System Research - Alemania Georg-August-Universitat Gottingen - Alemania |
| 6 | Sousa, Sergio G. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 7 | Adibekyan, V. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 8 | Akinsanmi, Babatunde | - |
Univ Porto - Portugal
Natl Space Res & Dev Agcy - Nigeria Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal National Space Research and Development Agency - Nigeria Centro de Astrofísica da Universidade do Porto - Portugal |
| 9 | Demangeon, O. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 10 | Faria, J. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 11 | GOMES-DA SILVA, J. | Hombre |
Univ Porto - Portugal
Universidade do Porto, Centro de Astrofísica - Portugal Universidade do Porto - Portugal Centro de Astrofísica da Universidade do Porto - Portugal |
| 12 | Meunier, Nadege | - |
Univ Grenoble Alpes - Francia
Universite Grenoble Alpes - Francia |
| Fuente |
|---|
| Fundação para a Ciência e a Tecnologia |
| FCT |
| European Commission |
| Deutsche Forschungsgemeinschaft |
| Deutscher Akademischer Austauschdienst |
| NASA |
| FCT - Fundacao para a Ciencia e a Tecnologia |
| National Aeronautics and Space Administration |
| Fundação para a Ciência e a Tecnologia |
| NASA Explorer Program |
| Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção |
| Deutsche Forschungsgemeinschft (DFG, German Research Foundation) |
| FCT (Portugal) |
| Deutsche Forschungsgemeinschft |
| FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao |
| European Organization for Astronomical Research in the Southern Hemisphere under ESO programs |
| FCT/DAAD |
| Deutsche Forschungsgemeinschft (DFG) |
| FCT/DAAD bilateral grant 2019 (DAAD) |
| POCH/FSE (EC) |
| Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção |
| Agradecimiento |
|---|
| We would like to thank the anonymous referee for insightful and constructive comments, which added significantly to the clarity of this paper. This work was supported by FCT - Fundacao para a Ciencia e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao by these grants: UID/FIS/04434/2019; UIDB/04434/2020 & UIDP/04434/2020; PTDC/ FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FIS-AST/ 28953/2017 & POCI-01-0145-FEDER-028953. S.H. and B.A. acknowledge support by the fellowships PD/BD/128119/2016 and PD/BD/135226/2017 funded by FCT (Portugal) and POCH/FSE (EC). S.S., V.A., O.D.S.D. and J.P.F. acknowledge support from FCT through work contracts nos IF/00028/2014/CP1215/CT0002, IF/00650/2015/CP1273, DL 57/2016/ CP1364/CT0004, DL 57/2016/CP1364/CT0005. M.O. acknowledges the support of the Deutsche Forschungsgemeinschft (DFG) priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets (RE 1664/17-1)". M.O., E.A.G also acknowledge the support of the FCT/DAAD bilateral grant 2019 (DAAD ID: 57453096). M.O. acknowledges research funding from the Deutsche Forschungsgemeinschft (DFG, German Research Foundation) - OS 508/1-1. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018), and the NumPy, SciPy, Matplotlib, tesscut, celerite Python modules (Van Der Walt et al. 2011; Jones et al. 2001-; Hunter 2007; Brasseur et al. 2019; Foreman-Mackey et al. 2017) and pandas (McKinney 2010, 2011). This research made use of Lightkurve, a Python package for Kepler and TESS data analysis (Lightkurve Collaboration 2018). This paper includes data collected with the TESS mission, obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs: '0100.C-0097(A)','0100.C-0487(A)','0100.C-0836(A)','0100.D-0444(A)', '0101.C-0379(A)','0101.D-0494 (A)','0101.D-0494(B)','060.A-9036(A)','089.C-0732(A)','090.C-0421(A)','093. C-0062(A)','095.C-0040(A)','095.C-0551(A)','095.C-0799', '095.C-0799(A)', '096.C-0053(A)','096.C-0460(A)', '096.C-0499(A)', '096.C-0876(A)', '097.C- 0021(A)','097.C-0090(A)', '097.C-0390(B)', '097.C-0571(A)', '098-C-0518(A)', '098.C-0269(A)', '098.C-0269(B)', '098.C-0366(A)', '098.C-0518(A)', '098.C- 0739(A)','099.C-0205(A)','099.C-0458(A)','099.C-0798(A)', '183.C-0437(A)', '188.C-0265(O)', '188.C-0265(P)', '188.C-0265(Q)', '188.C-0265(R)', '190.C- 0027(A)','191.C-0873(A)','192.C-0224','192.C-0224(C)','192.C-0852(A)','196. C-0042', '196.C-0042(D)', '196.C-0042(E)', '196.C-1006(A)', '198.C-0836(A)', '198.C-0838(A)','60.A-9036(A)','Lagrange'. |
| Acknowledgements. We would like to thank the anonymous referee for insightful and constructive comments, which added significantly to the clarity of this paper. This work was supported by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020 & UIDP/04434/2020; PTDC/ FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FIS-AST/ 28953/2017 & POCI-01-0145-FEDER-028953. S.H. and B.A. acknowledge support by the fellowships PD/BD/128119/2016 and PD/BD/135226/2017 funded by FCT (Portugal) and POCH/FSE (EC). S.S., V.A., O.D.S.D. and J.P.F. acknowledge support from FCT through work contracts n©s IF/00028/2014/CP1215/CT0002, IF/00650/2015/CP1273, DL 57/2016/ CP1364/CT0004, DL 57/2016/CP1364/CT0005. M.O. acknowledges the support of the Deutsche Forschungsgemeinschft (DFG) priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets (RE 1664/17-1)”. M.O., E.A.G also acknowledge the support of the FCT/DAAD bilateral grant 2019 (DAAD ID: 57453096). M.O. acknowledges research funding from the Deutsche Forschungsgemeinschft (DFG, German Research Foundation) - OS 508/1-1. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018), and the NumPy, SciPy, Matplotlib, tesscut, celerite Python modules (Van Der Walt et al. 2011; Jones et al. 2001–; Hunter 2007; Brasseur et al. 2019; Foreman-Mackey et al. 2017) and pandas (McKinney 2010, 2011). This research made use of Lightkurve, a Python package for Kepler and TESS data analysis (Lightkurve Collaboration 2018). This paper includes data collected with the TESS mission, obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs: ’0100.C-0097(A)’,’0100.C-0487(A)’,’0100.C-0836(A)’,’0100.D-0444(A)’, ’0101.C-0379(A)’,’0101.D-0494 (A)’,’0101.D-0494(B)’,’060.A-9036(A)’,’089.C-0732(A)’,’090.C-0421(A)’,’093. C-0062(A)’,’095.C-0040(A)’,’095.C-0551(A)’,’095.C-0799’, ’095.C-0799(A)’, ’096.C-0053(A)’,’096.C-0460(A)’, ’096.C-0499(A)’, ’096.C-0876(A)’, ’097.C-0021(A)’,’097.C-0090(A)’, ’097.C-0390(B)’, ’097.C-0571(A)’, ’098-C-0518(A)’, ’098.C-0269(A)’, ’098.C-0269(B)’, ’098.C-0366(A)’, ’098.C-0518(A)’, ’098.C-0739(A)’,’099.C-0205(A)’,’099.C-0458(A)’,’099.C-0798(A)’, ’183.C-0437(A)’, ’188.C-0265(O)’, ’188.C-0265(P)’, ’188.C-0265(Q)’, ’188.C-0265(R)’, ’190.C-0027(A)’,’191.C-0873(A)’,’192.C-0224’,’192.C-0224(C)’,’192.C-0852(A)’,’196. C-0042’, ’196.C-0042(D)’, ’196.C-0042(E)’, ’196.C-1006(A)’, ’198.C-0836(A)’, ’198.C-0838(A)’,’60.A-9036(A)’,’Lagrange’. |