Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Detection and Characterization of Cherries: A Deep Learning Usability Case Study in Chile
Indexado
WoS WOS:000551643400001
Scopus SCOPUS_ID:85086520795
DOI 10.3390/AGRONOMY10060835
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Chile is one of the main exporters of sweet cherries in the world and one of the few in the southern hemisphere, being their harvesting between October and January. Hence, Chilean cherries have gained market in the last few years and positioned Chile in a strategic situation which motivates to undergo through a deep innovation process in the field. Currently, cherry crop estimates have an error of approximately 45%, which propagates to all stages of the production process. In order to mitigate such error, we develop, test and evaluate a deep neural-based approach, using a portable artificial vision system to enhance the cherries harvesting estimates. Our system was tested in a cherry grove, under real field conditions. It was able to detect cherries with up to 85% of accuracy and to estimate production with up to 25% of error. In addition, it was able to classify cherries into four sizes, for a better characterization of the production for exportation.

Revista



Revista ISSN
Agronomy Basel 2073-4395

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agronomy
Plant Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Villacres, Juan Hombre Universidad Técnica Federico Santa María - Chile
2 AUAT-CHEEIN, FERNANDO ALFREDO Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
AC3E
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID
Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank to the Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project FB0008 and FONDECYT grant 1201319. Authors would also like to thank to Universidad Tecnica Federico SantaMaria, DGIIP, PIIC 25/2020, and ANID PFCHA/DoctoradoNacional/2020-21200684.
Funding: The authors would like to thank to the Advanced Center for Electrical and Electronic Engineering (AC3E), ANID Basal project FB0008 and FONDECYT grant 1201319. Authors would also like to thank to Universidad Técnica Federico Santa María, DGIIP, PIIC 25/2020, and ANID PFCHA/DoctoradoNacional/2020-21200684.

Muestra la fuente de financiamiento declarada en la publicación.