Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A new cure rate model with flexible competing causes with applications to melanoma and transplantation data
Indexado
WoS WOS:000552377000001
Scopus SCOPUS_ID:85088566786
DOI 10.1002/SIM.8664
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this article, we introduce a long-term survival model in which the number of competing causes of the event of interest follows the zero-modified geometric (ZMG) distribution. Such distribution accommodates equidispersion, underdispersion, and overdispersion and captures deflation or inflation of zeros in the number of lesions or initiated cells after the treatment. The ZMG distribution is also an appropriate alternative for modeling clustered samples when the number of competing causes of the event of interest consists of two subpopulations, one containing only zeros (cure proportion), while in the other (noncure proportion) the number of competing causes of the event of interest follows a geometric distribution. The advantage of this assumption is that we can measure the cure proportion in the initiated cells. Furthermore, the proposed model can yield greater or lower cure proportion than that of the geometric distribution when modeling the number of competing causes. In this article, we present some statistical properties of the proposed model and use the maximum likelihood method to estimate the model parameters. We also conduct a Monte Carlo simulation study to evaluate the performance of the estimators. We present and discuss two applications using real-world medical data to assess the practical usefulness of the proposed model.

Revista



Revista ISSN
Statistics In Medicine 0277-6715

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Public, Environmental & Occupational Health
Mathematical & Computational Biology
Statistics & Probability
Medicine, Research & Experimental
Medical Informatics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Leao, Jeremias Hombre Univ Fed Amazonas - Brasil
Universidade Federal do Amazonas - Brasil
2 Bourguignon, Marcelo Hombre Univ Fed Rio Grande do Norte - Brasil
Universidade Federal do Rio Grande do Norte - Brasil
3 GALLARDO, DIEGO, I Hombre Universidad de Atacama - Chile
4 Rocha, Ricardo Hombre Univ Fed Bahia - Brasil
Universidade Federal da Bahia - Brasil
5 Tomazella, Vera Mujer Univ Fed Sao Carlos - Brasil
Universidade Federal de São Carlos - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.