Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PATREC.2020.06.013 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Food image recognition has recently attracted the attention of many researchers, due to the challenging problem it poses, the ease collection of food images, and its numerous applications to health and leisure. In real applications, it is necessary to analyze and recognize thousands of different foods. For this purpose, we propose a novel prediction scheme based on a class hierarchy that considers local classifiers, in addition to a flat classifier. In order to make a decision about which approach to use, we define different criteria that take into account both the analysis of the Epistemic Uncertainty estimated from the 'children' classifiers and the prediction from the 'parent' classifier. We evaluate our proposal using three Uncertainty estimation methods, tested on two public food datasets. The results show that the proposed method reduces parent-child error propagation in hierarchical schemes and improves classification results compared to the single flat classifier, meanwhile maintains good performance regardless the Uncertainty estimation method chosen. (C) 2020 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aguilar, Eduardo | Hombre |
Universidad Católica del Norte - Chile
Univ Barcelona - España Universitat de Barcelona - España |
| 2 | Radeva, Petia | - |
Univ Barcelona - España
Universitat de Barcelona - España |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Generalitat de Catalunya |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| CERCA Programme/Generalitat de Catalunya |
| Nvidia |
| CONICYT Becas Chile |
| Horizon 2020 Framework Programme |
| Validithi EIT Health program |
| Nestore project of the European Commission Horizon 2020 programme |
| European Commission Horizon 2020 programme |
| de Catalunya |
| H2020 Societal Challenges Programme |
| Agradecimiento |
|---|
| This work was partially funded by TIN2018-095232-B-C21, SGR-2017 1742, Nestore project of the European Commission Horizon 2020 programme (Grant no. 769643), Validithi EIT Health program and CERCA Programme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile. We acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU. |
| This work was partially funded by TIN2018-095232-B-C21, SGR-2017 1742, Nestore project of the European Commission Horizon 2020 programme (Grant no. 769643), Validithi EIT Health program and CERCA Programme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile. We acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU. |