Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2020009 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier-Stokes and the Darcy-Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We consider the standard mixed formulation in the Navier-Stokes domain and the dual-mixed one in the Darcy-Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, anda priorierror estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | Discacciati, Marco | Hombre |
Loughborough Univ - Reino Unido
Loughborough University - Reino Unido |
| 3 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 4 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad de Concepción - Chile
Universidad del Bío Bío - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Universidad de Concepción |
| CONICYT-Chile through project FONDECYT |
| CONICYT-Chile of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigación en Computación |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| Universidad del Bio-Bio through DIUBB Project |
| Universidad del BÃo-BÃo |
| CONICYT-Chile through Becas-Chile Programme for Chilean students |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through project AFB17001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, project Fondecyt 1161325, and Becas-Chile Programme for Chilean students; by Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion; and by Universidad del Bio-Bio through DIUBB project GI 171508VC. |
| Acknowledgements. This work was partially supported by CONICYT-Chile through project AFB17001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, project Fonde-cyt 1161325, and Becas-Chile Programme for Chilean students; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Universidad del Bío-Bío through DIUBB project GI 171508VC. |