Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2020.06.005 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we present an a posteriori error analysis of a mixed-VEM discretization for a nonlinear Brinkman model of porous media flow, which has been proposed by the authors in a previous work. Therein, the system is formulated in terms of a pseudostress tensor and the velocity gradient, whereas the velocity and the pressure of the fluid are computed via postprocessing formulas. Furthermore, the well-posedness of the associated augmented formulation along with a priori error bounds for the discrete scheme also were established. We now propose reliable and efficient residual-based a posteriori error estimates for a computable approximation of the virtual solution associated to the aforementioned problem. The resulting error estimator is fully computable from the degrees of freedom of the solutions and applies on very general polygonal meshes. For the analysis we make use of a global inf-sup condition, Helmholtz decomposition, local approximation properties of interpolation operators and inverse inequalities together with localization arguments based on bubble functions. Finally, we provide some numerical results confirming the properties of our estimator and illustrating the good performance of the associated adaptive algorithm. (C) 2020 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Munar, Mauricio | Hombre |
Universidad de Concepción - Chile
|
| 2 | SEQUEIRA-CHAVARRIA, FILANDER A. | - |
UNIV NACL - Costa Rica
Universidad Nacional de Costa Rica - Costa Rica Universidad Nacional - Costa Rica |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Universidad Nacional |
| Universidad de Concepción |
| Universidad de Concepci?n |
| CONICYT-Chile of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigación en Computación |
| CI 2 MA |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| CONICYT-Chile through the Becas-CONICYT Programme for foreign students |
| Becas-CONICYT Programme |
| Centro de Investigaci?n en Ingenier?a Matem?tica |
| Tecnol?gicos de Excelencia con Financiamiento Basal |
| Universidad Nacional, Costa Rica |
| Agradecimiento |
|---|
| The authors would like to thank Gabriel N. Gatica, CI2MA and Departamento de Ingenieria Matematica, Universidad de Concepcion, Chile, for facilitating their collaboration. The work of Mauricio Munar was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, and the Becas-CONICYT Programme for foreign students, and by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion. The work of Filander A. Sequeira was partially supported by Universidad Nacional, Costa Rica, through the project 0103-18. |
| The authors would like to thank Gabriel N. Gatica, CI2MA and Departamento de Ingenier?a Matem?tica, Universidad de Concepci?n, Chile, for facilitating their collaboration. The work of Mauricio Munar was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cient?ficos y Tecnol?gicos de Excelencia con Financiamiento Basal, and the Becas-CONICYT Programme for foreign students, and by Centro de Investigaci?n en Ingenier?a Matem?tica (CI2MA), Universidad de Concepci?n. The work of Fil?nder A. Sequeira was partially supported by Universidad Nacional, Costa Rica, through the project 0103-18. |