Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Spatio-temporal dynamics of shift current quantum pumping by femtosecond light pulse
Indexado
WoS WOS:000559777700001
Scopus SCOPUS_ID:85076369200
DOI 10.1088/2515-7639/AB0A3E
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Shift current-a photocurrent induced by light irradiating noncentrosymmetric materials in the absence of any bias voltage or built-in electric field-is one of the mechanisms of the so-called bulk photovoltaic effect. It has been traditionally described as a nonlinear optical response of a periodic solid to continuous wave light using a perturbative formula, which is linear in the intensity of light and which involves Berry connection describing the shift in the center of mass position of the Wannier wave function associated with the transition between the valence and conduction bands of the solid. Since shift current is solely due to off-diagonal elements of the nonequilibrium density matrix that encode quantum correlations, its peculiar space-time dynamics in response to femtosecond light pulse employed locally can be expected. To study such response requires to analyze realistic two-terminal devices, instead of traditional periodic solids, for which we choose paradigmatic Rice-Mele model sandwiched between two metallic electrodes and apply to it time-dependent nonequilibrium Green function algorithms scaling linearly in the number of time steps and capable of treating nonperturbative effects in the amplitude of external time-dependent fields. This reveals novel features:superballistictransport, signified by time dependence of the displacement, similar to t(nu)with nu > 1, of the photoexcited charge carriers from the spot where the femtosecond light pulse is applied toward the electrodes; and photocurrent quadratic in light intensity at subgap frequencies of light due totwo-photon absorptionprocesses that were missed in previous perturbative analyses. Furthermore, frequency dependence of the DC component of the photocurrent reveals shift current as a realization of nonadiabatic quantum charge pumping enabled bybreaking of left-right symmetryof the device structure. This demonstrates that a much wider class of systems, than the usually considered polar noncentrosymmetric bulk materials, can be exploited to generate nonzero DC component of photocurrent in response to unpolarized light and optimize shift-current-based solar cells and optoelectronic devices.

Revista



Revista ISSN
2515-7639

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bajpai, U. - Univ Delaware - Estados Unidos
University of Delaware - Estados Unidos
2 Popescu, B. S. - Univ Delaware - Estados Unidos
University of Delaware - Estados Unidos
3 Plechac, P. - Univ Delaware - Estados Unidos
University of Delaware - Estados Unidos
4 Nikolic, B. K. - Univ Delaware - Estados Unidos
RIKEN Ctr Emergent Matter Sci CEMS - Japón
University of Delaware - Estados Unidos
RIKEN - Japón
5 FOA-TORRES, LUIS EDUARDO FRANCISCO Hombre Universidad de Chile - Chile
6 Ishizuka, H. - Univ Tokyo - Japón
The University of Tokyo - Japón
7 Nagaosa, N. - RIKEN Ctr Emergent Matter Sci CEMS - Japón
Univ Tokyo - Japón
RIKEN - Japón
The University of Tokyo - Japón

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Fondo Nacional de Desarrollo Científico y Tecnológico
FONDECYT (Chile)
NSF
Core Research for Evolutional Science and Technology
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Council for Science, Technology and Innovation
Army Research Office
Japan Society for the Promotion of Science KAKENHI
ImPACT Program of Council for Science, Technology and Innovation (Cabinet office, Government of Japan)
CREST, Japan Science and Technology
ARO MURI Award

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
UB, BSP and BKN were supported by NSF grant No. CHE 1566074. PP was supported by ARO MURI Award No. W911NF-14-0247. LEFFT was supported by FondeCyT grant No. 1170917 (Chile). HI and NN were supported by Japan Society for the Promotion of Science KAKENHI (grants No. JP16H06717 and JP26103006); ImPACT Program of Council for Science, Technology and Innovation (Cabinet office, Government of Japan, 888176); and CREST, Japan Science and Technology (grant no. JPMJCR16F1). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant No. ACI-1548562.
UB, BSP and BKN were supported by NSF grant No. CHE 1566074. PP was supported by ARO MURI Award No. W911NF-14-0247. LEFFT was supported by FondeCyT grant No. 1170917 (Chile). HI and NN were supported by Japan Society for the Promotion of Science KAKENHI (grants No. JP16H06717 and JP26103006); ImPACT Program of Council for Science, Technology and Innovation (Cabinet office, Government of Japan, 888176); and CREST, Japan Science and Technology (grant no. JPMJCR16F1). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant No. ACI-1548562.

Muestra la fuente de financiamiento declarada en la publicación.