Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ACCESS.2020.3019245 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In recent years, Convolutional Neural Networks (CNN) have been widely used for real-world applications in the field of computer vision. Their class-leading performance, however, depends heavily on the architecture used for a given problem. In most cases, the architectures are manually optimized by the researchers, a time-consuming process hard to achieve without prior knowledge of CNN. In this paper, we propose a new genetic algorithm for the optimization of the CNN architecture for a given image classification problem. This algorithm extends and refines existing research in the field, by allowing depth exploration, introducing a novel sequential crossover operator, using an incremental selective pressure schedule over evolution (favoring higher diversity in early generations) and by evaluating individual performances over the validation set with early stopping. The technique is validated in three image classification dataset, namely, CIFAR10, MNIST and Caltech256 datasets, which are widely used benchmarks for image classification algorithms. We evaluate the performance and total execution time over these datasets, and compare our results with those achieved by the best genetic methods published so far. In all cases, we achieve better results in terms of test accuracy, consistently over different datasets, while remaining in the same orders of magnitude of execution time of the fastest approaches.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Johnson, Franklin | Hombre |
Universidad de Playa Ancha - Chile
|
| 2 | Valderrama, Alvaro | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | VALLE-VIDAL, CARLOS ANTONIO | Hombre |
Universidad de Playa Ancha - Chile
|
| 4 | CRAWFORD-LABRIN, BRODERICK | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 5 | SOTO-DE GIORGIS, RICARDO JAVIER | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 6 | NANCULEF-ALEGRIA, JUAN RICARDO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| CONICYT/FONDECYT/REGULAR |
| Regular |
| Comision Nacional de Investigacion Cientica y Tecnologica (CONICYT)/Fondo Nacional de Desarrollo Cientico y Tecnologico (FONDECYT)/Iniciacion |
| Agradecimiento |
|---|
| The work of Franklin Johnson was supported by Comision Nacional de Investigacion Cientica y Tecnologica (CONICYT)/Fondo Nacional de Desarrollo Cientico y Tecnologico (FONDECYT)/Iniciacion 11180524. The work of Broderick Crawford was supported by CONICYT/FONDECYT/Regular 1171243 and Ricardo Soto was supported by CONICYT/FONDECYT/Regular 1190129. |
| The work of Franklin Johnson was supported by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)/Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)/Iniciación 11180524. The work of Broderick Crawford was supported by CONICYT/FONDECYT/Regular 1171243 and Ricardo Soto was supported by CONICYT/FONDECYT/Regular 1190129. |