Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1214/18-AIHP884 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article investigates second order intertwinings between semigroups of birth-death processes and discrete gradients on N. It goes one step beyond a recent work of Chafai and Joulin which establishes and applies to the analysis of birth-death semigroups a first order intertwining Similarly to the first order relation, the second order intertwining involves birth-death and Feynman-Kac semigroups and weighted gradients on N, and can be seen as a second derivative relation. As our main application, we provide new quantitative bounds on the Stein factors of discrete distributions. To illustrate the relevance of this approach, we also derive approximation results for the mixture of Poisson and geometric laws.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cloez, Bertrand | Hombre |
Univ Montpellier - Francia
Université de Montpellier - Francia |
| 2 | Delplancke, Claire | Mujer |
Centro de Modelamiento Matemático - Chile
Center for Mathematical Modeling - Chile |
| Fuente |
|---|
| CIMI (Centre International de Mathematiques et d'Informatique) Excellence program |
| Chaire Modelisation Mathematique et Biodiversite |
| STAB |
| ANR PIECE |