Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1155/2008/350326 | ||
| Año | 2008 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The classical Schwarz-Christoffel formula gives conformal mappings of the upper half-plane onto domains whose boundaries consist of a finite number of line segments. In this paper, we explore extensions to boundary curves which in one sense or another are made up of infinitely many line segments, with specific attention to the "infinite staircase" and to the Koch snowflake, for both of which we develop explicit formulas for the mapping function and explain how one can use standard mathematical software to generate corresponding graphics. We also discuss a number of open questions suggested by these considerations, some of which are related to differentials on hyperelliptic surfaces of infinite genus.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Riera, Gonzalo | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Carrasco, Herńan | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | Preiss, Rubén | Hombre |
Pontificia Universidad Católica de Chile - Chile
|