Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1145/3232057 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The Swap-Insert Correction distance from a string S of length n to another string L of length in m >= n on the alphabet [1..sigma] is the minimum number of insertions, and swaps of pairs of adjacent symbols, converting S into L. Contrarily to other correction distances, computing it is NP-Hard in the size sigma of the alphabet. We describe an algorithm computing this distance in time within O(sigma(2) nmg(sigma-1)), where for each alpha is an element of [1..sigma] there are n(alpha) occurrences of alpha in S, m(alpha) occurrences of alpha in L, and where g = max(alpha)(is an element of)([1..sigma]) min{n(alpha),m(alpha) - n(alpha)} is a new parameter of the analysis, measuring one aspect of the difficulty of the instance. The difficulty g is bounded by above by various terms, such as the length n of the shortest string S, and by the maximum number of occurrences of a single character in S (max(alpha)(is an element of)([1..sigma]) n(alpha)) This result illustrates how, in many cases, the correction distance between two strings can be easier to compute than in the worst case scenario.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | BARBAY-LEFEVRE, JEREMY FELIX | Hombre |
Universidad de Chile - Chile
|
| 2 | Perez-Lantero, Pablo | Hombre |
Universidad de Santiago de Chile - Chile
|
| Agradecimiento |
|---|
| This work is supported by the projects CONICYT FONDECYT/Regular No. 1170366 and No. 1160543. Part of this work was presented at the conference SPIRE 2015 (Barbay and Perez-Lantero 2015). |
| This work is supported by the projects CONICYT FONDECYT/Regular No. 1170366 and No. 1160543. Part of this work was presented at the conference SPIRE 2015 (Barbay and Pérez-Lantero 2015). Authors’ addresses: J. Barbay, Departamento de Ciencias de la Computación (DCC), Avenida Beauchef 851, Universidad de Chile. 837-0456 Santiago, Chile; email: jeremy@barbay.cl; P. Pérez-Lantero, Departamento de Matemática y Ciencia de la Computación (DMCC), Las Sophoras 173, Universidad de Santiago (USACH), 917-0020 Santiago, Chile; email: pablo.perez. l@usach.cl. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. © 2018 ACM 1549-6325/2018/08-ART49 $15.00 https://doi.org/10.1145/3232057 |