Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/SCCC.2010.33 | ||
| Año | 2010 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper an improved Fuzzy Rule-Based Trading Agent is presented. The proposal consists in adding machine-learning-based methods to improve the overall performance of an automated agent that trades in futures markets. The modified Fuzzy Rule-Based Trading Agent has to decide whether to buy or sell goods, based on the spot and futures time series, gaining a profit from the price speculation. The proposal consists first in changing the membership functions of the fuzzy inference model (gaussian and sigmoidal, instead of triangular and trapezoidal). Then using the NFAR (Neuro-Fuzzy Autorregresive) model the relevant lags of the time series are detected, and finally a fuzzy inference system (Self-Organizing Neuro-Fuzzy Inference System) is implemented to aid the decision making process of the agent. Experimental results demonstrate that with the addition of these techniques, the improved agent considerably outperforms the original one. © 2010 IEEE.
| Revista | ISSN |
|---|---|
| 2018 37 Th International Conference Of The Chilean Computer Science Society (Sccc) | 1522-4902 |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | CANESSA-TERRAZAS, ENRIQUE CARLOS ANGEL | Hombre |
Universidad Adolfo Ibáñez - Chile
|
| 3 | QUEZADA-LEN, ARIEL OSVALDO | Hombre |
Universidad Adolfo Ibáñez - Chile
|