Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-642-21587-2_5 | ||
| Año | 2011 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Modeling proximity searching problems in a metric space allows one to approach many problems in different areas, e.g. pattern recognition, multimedia search, or clustering. Recently there was proposed the permutation based approach, a novel technique that is unbeatable in practice but difficult to compress. In this article we introduce an improvement on that metric space search data structure. Our technique shows that we can compress the permutation based algorithm without loosing precision. We show experimentally that our technique is competitive with the original idea and improves it up to 46% in real databases. © 2011 Springer-Verlag Berlin Heidelberg.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Figueroa, Karina | Mujer |
Universidad Michoacana de San Nicolás de Hidalgo - México
|
| 2 | PAREDES-MORALEDA, RODRIGO ANDRES | Hombre |
Universidad de Talca - Chile
|
| 3 | Rangel, Roberto | Hombre |
Universidad Michoacana de San Nicolás de Hidalgo - México
|