Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/WI-IAT.2011.97 | ||
| Año | 2011 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The identification of communities in social networks is a common problem that researchers have been dealing using network analysis properties. However, in environments where community members are connected by digital documents, most researchers have either emphasize to solve the community discovery problem computing structural properties of networks, ignoring the underlying semantic information from digital documents. In this paper, we propose a novel approach to combine traditional network analysis methods for community detection with text mining techniques. This way, extracted communities can be labeled according to latent semantic information within documents, called topics. Our proposal was evaluated in Plexilandia, a virtual community of practice with more than 2,500 members and 9 years of commentaries. © 2011 IEEE.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cuadra, Lautaro | - |
Universidad de Chile - Chile
|
| 2 | RIOS-PEREZ, SEBASTIAN ALEJANDRO | Hombre |
Universidad de Chile - Chile
|
| 3 | L'Huillier, Gaston | Hombre |
Universidad de Chile - Chile
|