Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/MCOM/3380 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We employ a multivariate extension of the Gauss quadrature formula, originally due to Berens, Schmid, and Xu [Arch. Math. (Basel) 64 (1995), pp. 26-32], so as to derive cubature rules for the integration of symmetric functions over hypercubes (or infinite limiting degenerations thereof) with respect to the densities of unitary random matrix ensembles. Our main application concerns the explicit implementation of a class of cubature rules associated with the Bernstein-Szegii polynomials, which permit the exact integration of symmetric rational functions with prescribed poles at coordinate hyperplanes against unitary circular Jacobi distributions stemming from the Haar measures on the symplectic and the orthogonal groups.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | van Diejen, Jan Felipe | Hombre |
Universidad de Talca - Chile
|
| 2 | Emsiz, Erdal | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Agradecimiento |
|---|
| This work was supported in part by the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) Grants #1170179 and #1181046. |
| Received by the editor November 13, 2017, and, in revised form, April 5, 2018. 2010 Mathematics Subject Classification. Primary 65D32; Secondary 05E05, 15B52, 33C52, 33D52, 65T40. Key words and phrases. Cubature rules, symmetric functions, generalized Schur polynomials, Bernstein-Szegö polynomials, unitary random matrix ensembles, Jacobi distributions. This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants #1170179 and #1181046. |