Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-642-33275-3_64 | ||
| Año | 2012 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In real world pattern recognition problems, such as computer-assisted medical diagnosis, events of a given phenomena are usually found in minority, making it necessary to build algorithms that emphasize the effect of one of the classes at training time. In this paper we propose a variation of the well-known Adaboost algorithm that is able to improve its performance by using an asymmetric and robust cost function. We assess the performance of the proposed method on two medical datasets and synthetic datasets with different levels of imbalance and compare our results against three state-of-the-art ensemble learning approaches, achieving better and comparable results. © 2012 Springer-Verlag.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ormeno, Pablo | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Ramírez, Felipe | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | VALLE-VIDAL, CARLOS ANTONIO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Universidad Técnica Federico Santa María - Chile
Universidad Adolfo Ibáñez - Chile |
| 5 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Universidad Técnica Federico Santa María - Chile
Universidad Adolfo Ibáñez - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |