Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



The representation of the symmetric group on m-tamari intervals
Indexado
Scopus SCOPUS_ID:84882933723
DOI 10.1016/J.AIM.2013.07.014
Año 2013
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



An m-ballot path of size n is a path on the square grid consisting of north and east unit steps, starting at (0, 0), ending at (m n, n), and never going below the line {. x = m y}. The set of these paths can be equipped with a lattice structure, called the m-Tamari lattice and denoted by Tn(m), which generalizes the usual Tamari lattice Tn obtained when m = 1. This lattice was introduced by F. Bergeron in connection with the study of diagonal coinvariant spaces in three sets of n variables. The representation of the symmetric group Sn on these spaces is conjectured to be closely related to the natural representation of Sn on (labeled) intervals of the m-Tamari lattice, which we study in this paper.An interval [. P, Q] of Tn(m) is labeled if the north steps of Q are labeled from 1 to n in such a way the labels increase along any sequence of consecutive north steps. The symmetric group Sn acts on labeled intervals of Tn(m) by permutation of the labels. We prove an explicit formula, conjectured by F. Bergeron and the third author, for the character of the associated representation of Sn. In particular, the dimension of the representation, that is, the number of labeled m-Tamari intervals of size n, is found to be. (m+1)n(mn+1)n-2. These results are new, even when m = 1.The form of these numbers suggests a connection with parking functions, but our proof is not bijective. The starting point is a recursive description of m-Tamari intervals. It yields an equation for an associated generating function, which is a refined version of the Frobenius series of the representation. This equation involves two additional variables x and y, a derivative with respect to y and iterated divided differences with respect to x. The hardest part of the proof consists in solving it, and we develop original techniques to do so, partly inspired by previous work on polynomial equations with "catalytic" variables. © 2013 Elsevier Inc.

Revista



Revista ISSN
Advances In Mathematics 0001-8708

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bousquet-Mélou, Mireille Mujer Université de Bordeaux - Francia
2 Chapuy, Guillaume Hombre CNRS Centre National de la Recherche Scientifique - Francia
3 Preville-Ratelle, Louis-Francois Hombre Université du Québec à Montréal - Canadá
Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
European Research Council
Seventh Framework Programme
Fonds Québécois de la Recherche sur la Nature et les Technologies
LIRCO

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
G.C. was partially supported by the LIRCO and the European project ExploreMaps – ERC StG 208471. L.F.P.R. was partially supported by the latter project, by a Canadian CRSNG graduate scholarship, an FQRNT “stage international”, and finally by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica de Chile) via the Proyecto Anillo ACT56.

Muestra la fuente de financiamiento declarada en la publicación.