Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.4204/EPTCS.90.14 | ||
| Año | 2012 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Our concern is the behaviour of the elementary cellular automata with state set {0, 1} over the cell set Z/nZ (one-dimensional finite wrap-around case), under all possible temporal rules (asynchronicity). Over the torus Z/nZ (n ≤ 10),we will see that the ECA with Wolfram update rule 57 maps any v ∈ F n 2 to any w ∈ F n 2 , varying the temporal rule. We furthermore show that all even (element of the alternating group) bijective functions on the set F n 2 ∼ = {0,. .., 2 n − 1}, can be computed by ECA-57, by iterating it a sufficient number of times with varying temporal rules, at least for n ≤ 10. We characterize the non-bijective functions computable by asynchronous rules. The thread of all this is a novel paradigm: The algorithm is neither hard-wired (in the ECA), nor in the program or data (initial configuration), but in the temporal order of updating cells, and temporal order is pattern-universal.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vielhaber, Michael | Hombre |
Universidad Austral de Chile - Chile
Hochschule Bremerhaven - Alemania |