Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S11856-018-1796-8 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking values in X and u(t): (-, 0] X defined as u(t)() = u(t+) for < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue-Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel-Lizorkin spaces Fp,qs(T,X). A novel application to an inverse problem is given.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Conejero, J. Alberto | - |
Univ Politecn Valencia - España
Universitat Politècnica de València - España |
| 2 | LIZAMA-YAÑEZ, CARLOS | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | Murillo-Arcila, Marina | Mujer |
Univ Jaume 1 - España
Universidad Jaume I - España |
| 4 | Seoane-Sepulveda, Juan B. | Hombre |
UNIV COMPLUTENSE MADRID - España
Universidad Complutense de Madrid - España |
| Agradecimiento |
|---|
| The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P. |
| Acknowledgments. The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P. |