Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||||
| DOI | 10.4067/S0717-97072018000404173 | ||||||
| Año | 2018 | ||||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work quantitative structure-activity relationship (QSAR) study has been done on 1,2-ethylenediamine derivatives as anti-tuberculosis drugs. Genetic algorithm (GA), artificial neural network (ANN), multiple linear regressions (stepwise-MLR) and Imperialist Competitive Algorithm (ICA), were used to create the nonlinear and linear QSAR models. The root-mean square errors of the training set and the test set for GA-ANN models using the jack-knife method, were 0.1402, 0.1304 and Q(2) = 0.94. Also, the R and R-2 values 0.85, 0.73 in the gas phase were obtained from a GA-stepwise-MLR model. Q2 of training set for PLS was 0.52. The results obtained from this work indicate that ANN and ICA models are more effective than other statistical methods and exhibit reasonable prediction capabilities. The best descriptors are G3u, HATS2e, F02(C-N), GGI10, RDF040m, Mor22p, Mor05p, TIC4, H4e, H-052, G2m and Gle.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ghasemi, Ghasem | - |
Islamic Azad Univ - Iran
Islamic Azad University - Iran Islamic Azad University, Rasht Branch - Iran |
| 2 | Mohamadzade, Reihaneh | - |
Islamic Azad Univ - Iran
Islamic Azad University - Iran Islamic Azad University, Rasht Branch - Iran |