Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2013 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Assistive robotic devices -such as robotic wheelchairs- need environment information to ensure safe navigation. In the field of envi- ronment recognition, range sensors (such as Li- DAR and ultrasonic systems) and artificial vi- sion devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects). In this work we propose a sound-based ap- proach to enhance the environment recognition process. Our proposal is based on a neural net- work implementation which is able to classify up to 15 different environments, with accuracy rates ranging from 84% to 93%. This classification can later be used to constrain assistive vehicle navigation in order to protect the user. In this work, we include real experimentation (carried out at UFES's campus -Brazil-) and statistical validation of our proposal.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vidal, Eduardo González | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Zarricueta, Ernesto Fredes | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Prieto, Pablo | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | De Souza, Alberto | Hombre |
Federal University of Espírito Santo - Brasil
|
| 5 | Bastos-Filho, Teodiano | - |
Federal University of Espírito Santo - Brasil
|
| 6 | De Aguiar, Edilson | - |
Federal University of Espírito Santo - Brasil
|
| 7 | Auat Cheein, Fernando A. | Hombre |
Universidad Técnica Federico Santa María - Chile
|