Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach
Indexado
Scopus SCOPUS_ID:84944877229
DOI
Año 2015
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk's w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for models 1 and 2, respectively). Additionally, these results were compared with the CIM and Bayesian interval mapping (BIM) methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two methods. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying nonnormally distributed data.

Disciplinas de Investigación



WOS
Agronomy
Scopus
Agronomy And Crop Science
Plant Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ARRIAGADA-LAGOS, OSVIN ALEJANDRO - Universidad de Talca - Chile
2 Ferreira, Marcia F.S. Mujer Federal University of Espírito Santo - Brasil
3 Cervigni, Gerardo D.L. Hombre Universidad Nacional de Rosario - Argentina
4 Schuster, Ivan Hombre Central Cooperative for Agricultural Research - Brasil
5 Scapim, Carlos A. Hombre Universidade Estadual de Maringá - Brasil
6 MORA-POBLETE, FREDDY Hombre Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.