Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.ENDM.2015.06.063 | ||
| Año | 2015 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let α, σ > 0 and let A and S be subsets of a finite abelian group G of densities α and σ, respectively, both independent of |G|. Without any additional restrictions, the set A need not contain a 3-term arithmetic progression whose common gap lies in S. What is then the weakest pseudorandomness assumption that if put on S would imply that A contains such a pattern?More precisely, what is the least integer k≥2 for which there exists an η=η(α, σ) such that ‖S-σ‖Uk(G)≤η implies that A contains a non-trivial 3-term arithmetic progression with a common gap in S? Here, ‖{dot operator}‖Uk(G) denotes the kth Gowers norm.For G=Zn we observe that k must be at least 3. However for G=Fnp we show that k= 2 is sufficient, where here p is an odd prime and n is sufficiently large.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aigner-Horev, Elad | Hombre |
Ariel University - Israel
|
| 2 | Han, Hiep | Hombre |
Universidad de Chile - Chile
|