Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2015 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this article we present an ongoing work for extracting conceptual information from specialized-domain texts. Concepts are forms of dividing the world in classes and they are the fundamental pieces for constructing ontologies. In this sense, ontology learning is the (semi-) automatic support for constructing an ontology. Input data are required for the ontology learning and this data are the basic source from which to learn the relevant concepts for a domain, their definitions as well the relations holding between them. With this necessity in mind, we propose here a methodology that takes into account the level of synthetic judgements and word relevance in a sentence in order to filter out and rank sentences. Sentences with high relevance and low level of synthetic judgements should have at least a predicative verb characteristic of analytical definitions for being good candidates.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aguilar, Cesar | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Acosta, Olga | Mujer |
Pontificia Universidad Católica de Chile - Chile
|