Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-319-07557-0_21 | ||
| Año | 2014 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [11] yields a 3-approximation algorithm, equal to the integrality gap of the corresponding LP relaxation. Through a stronger LP relaxation, obtained by applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to 1 + φ, where φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted assignment setting, matching the result for the classic version. Interestingly, we show that our problem cannot be approximated within a factor better than e/e-1 ≈ 1.582 (unless P = NP). This provides some evidence that it is harder than the classic version, which is only known to be inapproximable within a factor 1.5 - ε. Since our 1 + φ bound remains tight when considering the seemingly stronger machine configuration LP, we propose a new job based configuration LP that has an infinite number of variables, one for each possible way a job may be split and processed on the machines. Using convex duality we show that this infinite LP has a finite representation and can be solved in polynomial time to any accuracy, rendering it a promising relaxation for obtaining better algorithms. © 2014 Springer International Publishing Switzerland.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CORREA-FONTECILLA, JOSE RAFAEL | Hombre |
Universidad de Chile - Chile
|
| 2 | Marchetti-Spaccamela, Alberto | Hombre |
Università degli Studi di Roma La Sapienza - Italia
Sapienza Università di Roma - Italia |
| 3 | Matuschke, Jannik | Hombre |
Universidad de Chile - Chile
|
| 4 | ACUNA-AGUAYO, VICENTE ERNESTO | Hombre |
Vrije Universiteit Amsterdam - Países Bajos
|
| 5 | Svensson, Ola | - |
Swiss Federal Institute of Technology EPFL, Lausanne - Suiza
Ecole Polytechnique Fédérale de Lausanne - Suiza |
| 6 | Verdugo, Victor | Hombre |
Universidad de Chile - Chile
|
| 7 | VERSCHAE-TANNENBAUM, JOSE CLAUDIO | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Deutsche Forschungsgemeinschaft |
| European Research Council |
| Seventh Framework Programme |
| EU-IRSES |
| EUSACOU |
| Berlin Mathematical School |
| Núcleo Milenio Información y Coordinación en Redes, ICR |
| Agradecimiento |
|---|
| This work was partially supported by Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F, by EU-IRSES grant EUSACOU, by the DFG Priority Programme ”Algorithm Engineering” (SPP 1307), by the Berlin Mathematical School, by ERC Starting Grant 335288-OptApprox, and by FONDECYT project 3130407. |