Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2013 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Vocal hyperfunction is a description of abnormal patterns of vocal behavior that may lead to many common voice disorders. Previous studies demonstrated that disorders associated with hyperfunction could be detected in patients by measuring aerodynamic and acoustic parameters from recordings of a single sustained vowel using a Rothenberg mask setup. Although ambulatory systems have shown the best potential for unobtrusive long-term monitoring of vocal function, their ability to differentiate hyperfunctional from normal patterns of vocal behavior has not been assessed. This study provides an initial quantitative evaluation of the capabilities of a neck surface acceleration signal to objectively detect abnormal vocal behaviors associated with hyperfunctionally-related disorders. The goal is to verify if such detection is possible using a neck accelerometer signal rather than an airflow mask and incorporate vocal gestures from multiple vowels and running speech. An impedance-based inverse filtering algorithm is used to estimate aerodynamic parameters from the neck-surface acceleration signal. The results obtained when contrasting five patients with vocal nodules to five paired normal subjects indicate that the accelerometer-based assessment offers comparable discrimination capabilities as those from the aerodynamic recordings. The results also provide a first indication that this discrimination is possible with an expanded sample that includes other sustained vowels and running speech.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Zañartu, Matías | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Espinoza, Víctor | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Mehta, Daryush D. | - |
Massachusetts General Hospital - Estados Unidos
Harvard Medical School - Estados Unidos |
| 4 | Van Stan, Jarrad H. | - |
Massachusetts General Hospital - Estados Unidos
Harvard Medical School - Estados Unidos |
| 5 | Cheyne, Harold A. | Hombre |
Cornell University - Estados Unidos
|
| 6 | Ghassemi, Marzyeh | - |
MIT Computer Science & Artificial Intelligence Laboratory - Estados Unidos
|
| 7 | Guttag, John V. | Hombre |
MIT Computer Science & Artificial Intelligence Laboratory - Estados Unidos
|
| 8 | Hillman, Robert E. | Hombre |
Massachusetts General Hospital - Estados Unidos
Harvard Medical School - Estados Unidos |
| Fuente |
|---|
| Universidad de Chile |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| National Institute on Deafness and Other Communication Disorders |
| MIT MISTI |
| NIH-NIDCD |
| CONIC |
| Cognitive Neuroimaging Centre, Nanyang Technological University |