Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: Insights from reactive transport models
Indexado
WoS WOS:000458862600010
Scopus SCOPUS_ID:85061100656
DOI 10.1016/J.GCA.2019.01.027
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We have investigated how biota contributes to rapid chemical weathering of Hawaiian basalts using a reactive transport model and chemical data from a soil chronosequence. These Hawaiian soils have developed under a tropical forest with rainfall >200 cm/yr and exhibit extensive weathering on timescales of 10(4) years. We developed a series of multicomponent reactive transport models to examine the role of soil respiration and low molecular weight organic acids in generating these intense weathering patterns. The base model starts with a 1-m basaltic porous media reacting with a fluid of rainwater composition in equilibrium with atmospheric CO2. Subsequent simulations incorporate soil respiration modeled as a constant flux of CO2 at 10x atmospheric and continuous input of organic ligands - oxalate and citrate - at 10(-4) molar. After 20 kyr of weathering, the base model shows limited elemental losses, high soil pH and is overall CO2 (acid)-limited. Soil respiration lowers soil pH to circumneutral values, leaches all Mg and Ca from the basalt and allows precipitation of Fe(III)-oxyhydroxides, while Al stays immobile as secondary clays accumulate. After adding organic ligands, soil pH is reduced to values similar to the Hawaiian soils and Si, Al and Fe are exported from the system by dissolution of secondary phases, resulting in mass depletion patterns similar to the ones observed in Hawai'i. Dissolution of secondary minerals is generated by low pH and relatively low free activities of Al3+ and Fe3+ when organic ligands are added. These results suggest that organic acids in basalt weathering in tropical environments can sustain far-from-equilibrium conditions that drive fast elemental losses and that biologic activity contributes to weathering processes both by generating high soil P-CO2 and organic acids. (C) 2019 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geochemistry & Geophysics
Scopus
Geochemistry And Petrology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 PEREZ-FODICH, ALIDA EUGENIA Mujer CORNELL UNIV - Estados Unidos
Universidad de Chile - Chile
Cornell University - Estados Unidos
2 Derry, Louis A. Hombre CORNELL UNIV - Estados Unidos
Cornell University - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
NSF
Stanford University
University of California, Santa Barbara
CONICYT PFCHA/Doctorado Becas Chile/2014
Fulbright International Student Program
Integral Fellowship

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We are grateful to Kate Maher (Stanford University) for providing training and assistance using CrunchFlow in 2016. We would like to thank Oliver Chadwick (University of California, Santa Barbara) for providing chemical data from the LSAG, and Katherine Bland for field support and data analysis with soil pH, moisture and CO<INF>2</INF> measurements. A.P acknowledges CONICYT PFCHA/Doctorado Becas Chile/2014 - 72150180 and the Fulbright International Student Program for PhD fellowships. This study was partially supported by NSF 1349269 to L. Derry and Integral Fellowship awards to A. Perez-Fodich. We are thankful for the detailed and thoughtful reviews by the Associate Editor Chen Zhu and reviewers, which greatly improved the quality of this paper.
We are grateful to Kate Maher ( Stanford University ) for providing training and assistance using CrunchFlow in 2016. We would like to thank Oliver Chadwick ( University of California, Santa Barbara ) for providing chemical data from the LSAG, and Katherine Bland for field support and data analysis with soil pH, moisture and CO 2 measurements. A.P acknowledges CONICYT PFCHA/Doctorado Becas Chile/2014 - 72150180 and the Fulbright International Student Program for PhD fellowships. This study was partially supported by NSF 1349269 to L. Derry and Integral Fellowship awards to A. Perez-Fodich. We are thankful for the detailed and thoughtful reviews by the Associate Editor Chen Zhu and reviewers, which greatly improved the quality of this paper.

Muestra la fuente de financiamiento declarada en la publicación.