Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/ICPHYS.2018.8387684 | ||
| Año | 2018 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Detecting faults in real-time is an important aspect of supervision systems in industrial environments. Being able to detect, isolate and diagnose a fault, enables advance asset management, in particular predictive maintenance, which greatly increases efficiency and productivity. In this work a real-time fault detection platform is designed and implemented, following an Industrial Internet reference model. Fault detection is based on statistical data-driven methods. A preliminary application to an industrial motor is presented as case study.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Langarica, Saul | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Ruffelmacher, Christian | Hombre |
Siemens S.A. - Chile
Siemens AG - Alemania |
| 3 | Nunez, Felipe | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| Agradecimiento |
|---|
| The authors acknowledge funding from grants: CONICYT FONDECYT 1161039: “Distributed Multi-Agent Control for the Internet of Things” and CONICYT FONDEF/Primer concurso de investigación tecnológica en minería, del fondo de fomento al desarrollo científico y tecnológico, FONDEF/CONICYT 2016 IT16M10012: “Supervision and optimizing control of tailings using emergent technologies”. |