Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3233/IDA-173807 | ||||
| Año | 2019 | ||||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A set of experiments were conducted to evaluate the capability and performance of the proposed approaches relative to a baseline, using standard metrics, such as accuracy, precision, recall, and the F-1-score. The results show improvements in the case of binary, ternary and a 5-point scale classification in relation to classical machine learning algorithms such as SVM and NB, but they also present a challenge to improve the multiclass classification in this domain.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Keith Norambuena, Brian | Hombre |
Universidad Católica del Norte - Chile
|
| 2 | Fuentes Lettura, Exequiel | - |
Universidad Católica del Norte - Chile
|
| 2 | Lettura, Exequiel Fuentes | - |
Universidad Católica del Norte - Chile
|
| 3 | MENESES-VILLEGAS, CLAUDIO | Hombre |
Universidad Católica del Norte - Chile
|
| 3 | Villegas, Claudio Meneses | Hombre |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| National Institute of Allergy and Infectious Diseases |
| National Institute of Diabetes and Digestive and Kidney Diseases |
| American Society of Transplantation |
| Agradecimiento |
|---|
| This work was supported by grant number F32DK124941 (Boyarsky), K01DK101677 (Massie), and K23DK115908 (Garonzik-Wang) from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), K24AI144954 (Segev) from National Institute of Allergy and Infectious Diseases (NIAID), and by a grant from the Transplantation and Immunology Research Network of the American Society of Transplantation (Werbel). |