Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Computer-aided autism diagnosis via second-order difference plot area applied to EEG empirical mode decomposition
Indexado
WoS WOS:000549646700012
Scopus SCOPUS_ID:85053806888
DOI 10.1007/S00521-018-3738-0
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Autism spectrum disorder (ASD) is a name for a group of neurodevelopmental conditions that are characterized by some degree of impairment in social interaction, verbal and non-verbal communication, and difficulty in symbolic capacity and repetitive behaviors. The only protocol followed currently for ASD diagnosis is the qualitative behavioral assessment by experts through internationally established descriptive scaling standards. The assessment can, therefore, be affected by the degree of the evaluator experience as well as by the level of the descriptive standard robustness. This paper presents an EEG-based quantitative approach intended for automatic discrimination between children with typical neurodevelopment and children with ASD. The suggested work relies on second-order difference plot (SODP) area as a discriminative feature: First, every EEG channel in a 64 electrode cap—for every volunteer—is decomposed into intrinsic mode functions (IMFs) by empirical mode decomposition (EMD). Next, the second-order difference plot for the first ten intrinsic mode functions—of every channel—is sketched. Third, the value of the elliptical area —for every plot—is calculated. The 95% confidence ellipse area is used as the discriminative feature. Fourth, paired t-student test is applied to the vectors consisting of discriminative feature values for counterpart channels/IMFs (e.g., channel FPz/IMF7 in autistic and neurotypical) for all volunteers. Finally, principal component analysis (PCA) and neural network (NN) are applied to the SODP area feature matrix for two-class classification (ASD and neurotypical). Moreover, the 3D mapping of EEG SODP area values was implemented and analyzed. The obtained results show that the conducted t-student tests yield values of less than 0.05, and that the NN two-class classification based on SODP features leads to a 94.4% accuracy, which indicates significant differences between SODP area values of children with neurotypical development and those diagnosed with ASD. The obtained results have also been emphasized by the analysis of the findings of the performed 3D mapping.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Abdulhay, Enas - Jordan University of Science and Technology - Jordania
Jordan Univ Sci & Technol - Jordania
2 Alafeef, Maha Mujer Jordan University of Science and Technology - Jordania
University of Illinois at Urbana-Champaign - Estados Unidos
Jordan Univ Sci & Technol - Jordania
UNIV ILLINOIS - Estados Unidos
University of Illinois Urbana-Champaign - Estados Unidos
3 Alzghoul, Loai A. - The University of Jordan - Jordania
Univ Jordan - Jordania
4 Al Momani, Miral - Jordan University of Science and Technology - Jordania
Jordan Univ Sci & Technol - Jordania
5 Al Abdi, Rabah - Jordan University of Science and Technology - Jordania
Jordan Univ Sci & Technol - Jordania
6 Arunkumar, N. - SASTRA Deemed University - India
SASTRA Univ - India
7 MUNOZ-SOTO, ROBERTO FELIPE Hombre Universidad de Valparaíso - Chile
8 de Albuquerque, Victor Hugo C. Hombre Universidade de Fortaleza - Brasil
Univ Fortaleza - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Brazilian National Council for Research and Development
Ministry of Higher Education and Scientific Research
Scientific Research Support Fund

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study has been conducted under the umbrella of the Scientific Research Support Fund (SRSF)-Funded Project # MPH/1/11/2014 - Ministry of Higher Education and Scientific Research, Hashemite Kingdom of Jordan. Victor Hugo C. de Albuquerque appreciates the received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6).

Muestra la fuente de financiamiento declarada en la publicación.