Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Analysis of partially grouted masonry shear walls using artificial neural networks
Indexado
Scopus SCOPUS_ID:85062311995
DOI
Año 2018
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The behaviour of masonry walls subjected to lateral loads is inherently complex, due to the anisotropic properties of masonry and nonlinear interactions between the masonry concrete block, mortar, grouted cells, ungrouted cells, and reinforcing steel. As a result, the overall performance, stiffness degradation, and energy dissipation capacity of masonry shear walls is not well understood. Although current design codes provide equations to predict the shear strength of partially grouted (PG) walls, many of them are empirical based and rely on the behaviour of fully grouted (FG) walls and result in models lacking accuracy. With masonry shear walls used in many seismic regions around the world, there is a strong need for the development of a reliable and efficient design expression applicable to partially grouted masonry shear walls. Artificial neural networks (ANN) have shown great potential in engineering research applications to address highly complex problems and predict nonlinear relationships. By providing an ANN with a set of data of multiple inputs and a corresponding output, it can be trained to determine the weighted effect of each input parameter. This paper presents the development of an ANN analysis model for the shear strength of masonry walls, using a compiled experimental database of PG wall specimens. The effect of previously unaccounted parameters, such as size effects, in code-based approaches is discussed, as well as the influence of different types of ANN analysis options and input size on the model predictions. A sensitivity analysis is performed to evaluate the ANN model and gain insight for future research based on its predictions. The ANN model results are compared against leading design codes in North America (CSA S304 and TMS-402) to predict the shear strength of PG walls.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Hung, Jeffrey Hombre University of Alberta - Canadá
2 Cruz, Carlos Hombre University of Alberta - Canadá
3 SANDOVAL-MANDUJANO, CRISTIAN Hombre Pontificia Universidad Católica de Chile - Chile
4 Banting, Bennett Hombre Canada Masonry Design Centre Mississauga - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.