Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JDE.2018.11.012 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose a new approach for proving uniqueness of semi-wavefronts in generally non-monotone monostable reaction-diffusion equations with distributed delay. This allows to solve an open problem concerning the uniqueness of non-monotone (hence, slowly oscillating) semi-wavefronts to the KPP-Fisher equation with delay. Similarly, a broad family of the Mackey-Glass type diffusive equations is shown to possess a unique (up to translation) semi-wavefront for each admissible speed. (C) 2018 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Solar, Abraham | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Trofimchuk, S. | Hombre |
Universidad de Talca - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| FONDECYT (Chile) |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| postdoctoral FONDECYT |
| Agradecimiento |
|---|
| The authors express their appreciation to the anonymous referee for careful reading of the manuscript and his/her comments. This work was supported by FONDECYT (Chile) through the Postdoctoral Fondecyt 2016 program with project number 3160473 (A. Solar) and FONDECYT project 1150480 (S. Trofimchuk). |
| The authors express their appreciation to the anonymous referee for careful reading of the manuscript and his/her comments. This work was supported by FONDECYT (Chile) through the Postdoctoral Fondecyt 2016 program with project number 3160473 (A. Solar) and FONDECYT project 1150480 (S. Trofimchuk). |