Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Development of a Failure Detection Tool Using Machine Learning Techniques for a Large Aperture Concentrating Collector at an Industrial Application in Chile
Indexado
WoS WOS:000554428500170
Scopus SCOPUS_ID:85070601085
DOI 10.1063/1.5117678
Año 2019
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The present research has been carried out to provide a failure prediction tool for a Chilean concentrated juice company. The thermal energy required in the company's processes is supplied through a liquefied petroleum gas (LPG) boiler, whose feed water is preheated by a parabolic trough solar collector. According to monitored data and computer simulations carried out during 2017, it was possible to identify a low performance of the solar field. For the low performance of the solar field, it has been possible to identify the following faults: inaccuracies of the solar tracking system, low cleaning frequency of the solar field, low effectiveness of the heat exchanger between the solar field and the processes feed water circuit, among others. A condition-based maintenance tool was developed to detect failures in the solar field using machine learning techniques. The tool uses a set of four machine learning models to detect and identify the existence and source of faults such as soiling factors in the solar field, problems with the solar tracking system, problems with pumps and faults in the heat exchanger. For faults greater than or equal to 20%, the tool can identify the source of the fault 80% of the time if it comes from the solar field or heat exchanger, however, if the fault comes from one of the pumps the performance is lower. The tool generates false positives 21% of the time when it is used the model to detect faults at a global level of the solar thermal plant. This tool could be used to optimally manage the solar plant and maximize the cost savings.

Revista



Revista ISSN
Aip Conference Proceedings 0094-243X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Physics And Astronomy (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Muñoz, Iván Hombre Centro de Innovación UC Anacleto Angelini - Chile
Ctr Solar Energy Technol Fraunhofer Chile Res FCR - Chile
Fraunhofer Chile Research Foundation - Chile
2 CORTES-GOMEZ, FELIPE Hombre Centro de Innovación UC Anacleto Angelini - Chile
Ctr Solar Energy Technol Fraunhofer Chile Res FCR - Chile
Fraunhofer Chile Research Foundation - Chile
3 Crespo, Alicia Mujer Centro de Innovación UC Anacleto Angelini - Chile
Ctr Solar Energy Technol Fraunhofer Chile Res FCR - Chile
Fraunhofer Chile Research Foundation - Chile
4 Ibarra, Mercedes Mujer Centro de Innovación UC Anacleto Angelini - Chile
Ctr Solar Energy Technol Fraunhofer Chile Res FCR - Chile
Fraunhofer Chile Research Foundation - Chile
5 Richter, C -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CORFO
Comisión Nacional de Investigación Científica y Tecnológica
SERC-Chile
Corporación de Fomento de la Producción
Comisión Nacional de Investigación Científica y Tecnológica
Solar Energy Research Center
"Solar Energy Research Center" SERC-Chile
Corporación de Fomento de la Producción
Fraunhofer Chile Research

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the generous financial support provided by CORFO under the Project 13CEI2-21803 and project CONICYT/ FONDAP/ 15110019 "Solar Energy Research Center" SERC-Chile. The authors would like to thank Jucosol S.A. for the trust it has placed in Fraunhofer Chile Research to be part of this project. Special acknowledgement to Andrea Rey and Cristian Rey
The authors acknowledge the generous financial support provided by CORFO under the Project 13CEI2-21803 and project CONICYT/FONDAP/15110019 "Solar Energy Research Center" SERC-Chile. The authors would like to thank Jucosol S.A. for the trust it has placed in Fraunhofer Chile Research to be part of this project. Special acknowledgement to Andrea Rey and Cristian Rey.

Muestra la fuente de financiamiento declarada en la publicación.