Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-030-29891-3_17 | ||||
| Año | 2019 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Image classification is widely researched in the literature, where models based on Convolutional Neural Networks (CNNs) have provided better results. When data is not enough, CNN models tend to be overfitted. To deal with this, often, traditional techniques of data augmentation are applied, such as: affine transformations, adjusting the color balance, among others. However, we argue that some techniques of data augmentation may be more appropriate for some of the classes. In order to select the techniques that work best for particular class, we propose to explore the epistemic uncertainty for the samples within each class. From our experiments, we can observe that when the data augmentation is applied class-conditionally, we improve the results in terms of accuracy and also reduce the overall epistemic uncertainty. To summarize, in this paper we propose a class-conditional data augmentation procedure that allows us to obtain better results and improve robustness of the classification in the face of model uncertainty.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aguilar, Eduardo | Hombre |
Universidad Católica del Norte - Chile
Universitat de Barcelona - España Univ Barcelona - España |
| 2 | Radeva, Petia | - |
Universitat de Barcelona - España
Centre de Visió per Computador - España Univ Barcelona - España Comp Vis Ctr - España |
| 3 | Vento, M | - | |
| 4 | Percannella, G | - |
| Fuente |
|---|
| CERCA Programme/Generalitat de Catalunya |
| Nvidia |
| CONICYT Becas Chile |
| La MaratoTV3 |
| Nestore |
| ICREA Academia 2014 |
| Society of Gastrointestinal Radiologists |
| Validithi |
| Agradecimiento |
|---|
| This work was partially funded by TIN2015-66951-C2-1-R, 2017 SGR 1742, Nestore, Validithi, 20141510 (La MaratoTV3) and CERCA Pro-gramme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile. P. Radeva is partially supported by ICREA Academia 2014. We acknowledge the support of NVIDIA Corporation with the donation of Titan Xp GPUs. |
| This work was partially funded by TIN2015-66951-C2-1-R, 2017 SGR 1742, Nestore, Validithi, 20141510 (La MaratoTV3) and CERCA Programme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile. P. Radeva is partially supported by ICREA Academia 2014. We acknowledge the support of NVIDIA Corporation with the donation of Titan Xp GPUs. |