Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Resilience in the Decision-Making of an Artificial Autonomous System on the Stock Market
Indexado
WoS WOS:000549880400001
Scopus SCOPUS_ID:85073698409
DOI 10.1109/ACCESS.2019.2945471
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper presents the design of a resilience mechanism for supporting investment decision-making processes performed by artificial autonomous systems. In the field of Psychology, resilience is understood as the capacity of people to overcome adversity. Resilience has been determined to be a permanent necessary element for the life of an individual. In addition, different levels of intelligence, analysis capacities, and degrees of autonomy have been progressively incorporated within information systems that are oriented to support decision-making processes, such as those for stock markets. Particularly, the inclusion of affective criteria or variables within decision-making systems represents a promising line of action. However, to the best of our knowledge, there are no proposals that suggest the inclusion of a psychological approach to resilience within an autonomous decision-making system for stock markets. Specifically, the incorporation of a psychological approach to resilience allows the autonomous system to face special difficult investment scenarios (e.g., an economic shock) and prevent the system from achieving a permanent negative performance. Thus, psychological resilience can enable an artificial autonomous system to adapt its decision-making processes according to uncertain investment environments. Our proposal conducts experiments using official data from the Standard Poor's 500 Index. The results are promising and are based on a second-order autoregressive model. The test results suggest that the use of a resilience mechanism within an artificial autonomous system can contain and recover the affective dimensions of the system when it faces adverse decision scenarios.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 CABRERA-PANIAGUA, DANIEL ANDRES Hombre Universidad de Valparaíso - Chile
Centro de Investigación en Entrenamiento - Chile
CIDEP UV - Chile
2 Rubilar, Rolando Hombre Universidad de Valparaíso - Chile
3 CUBILLOS-FIGUEROA, CLAUDIO ALONSO Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CIDEP-UV, Universidad de Valparaiso, Chile, through CIDI 13 Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by CIDEP-UV, Universidad de Valparaiso, Chile, through CIDI 13 Project.

Muestra la fuente de financiamiento declarada en la publicación.