Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-030-31332-6_6 | ||||
| Año | 2020 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The recognition of food image is an interesting research topic, in which its applicability in the creation of nutritional diaries stands out with the aim of improving the quality of life of people with a chronic disease (e.g. diabetes, heart disease) or prone to acquire it (e.g. people with overweight or obese). For a food recognition system to be useful in real applications, it is necessary to recognize a huge number of different foods. We argue that for very large scale classification, a traditional flat classifier is not enough to acquire an acceptable result. To address this, we propose a method that performs prediction with local classifiers, based on a class hierarchy, or with flat classifier. We decide which approach to use, depending on the analysis of both the Epistemic Uncertainty obtained for the image in the children classifiers and the prediction of the parent classifier. When our criterion is met, the final prediction is obtained with the respective local classifier; otherwise, with the flat classifier. From the results, we can see that the proposed method improves the classification performance compared to the use of a single flat classifier.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aguilar, Eduardo | Hombre |
Universidad Católica del Norte - Chile
Universitat de Barcelona - España Univ Barcelona - España |
| 2 | Radeva, Petia | - |
Universitat de Barcelona - España
Centre de Visió per Computador - España Univ Barcelona - España Comp Vis Ctr - España |
| 3 | Morales, A | - | |
| 4 | Fierrez, J | - | |
| 5 | Sanchez, JS | - | |
| 6 | Ribeiro, B | - |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| CERCA Programme/Generalitat de Catalunya |
| Nvidia |
| CONICYT Becas Chile |
| Institució Catalana de Recerca i Estudis Avançats |
| Institució Catalana de Recerca i Estudis Avançats |
| Nestore |
| ICREA Academia 2014 |
| Society of Gastrointestinal Radiologists |
| Validithi |
| CERCA Pro-gramme/Generalitat de Catalunya |
| Agradecimiento |
|---|
| This work was partially funded by TIN2015-66951-C2-1-R, 2017 SGR 1742, Nestore, Validithi, 20141510 (La MaratoTV3) and CERCA Pro-gramme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile and M. P. Radeva is partially supported by ICREA Academia 2014. We acknowledge the support of NVIDIA Corporation with the donation of Titan Xp GPUs. |
| This work was partially funded by TIN2015-66951-C2-1-R, 2017 SGR 1742, Nestore, Validithi, 20141510 (La MaratoTV3) and CERCA Programme/Generalitat de Catalunya. E. Aguilar acknowledges the support of CONICYT Becas Chile and M. P. Radeva is partially supported by ICREA Academia 2014. We acknowledge the support of NVIDIA Corporation with the donation of Titan Xp GPUs. |