Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/18M121201X | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We show that in the random hyperbolic graph model as formalized by Gugelmann, Panagiotou, and Peter (2012) in the most interesting range of 1,2 < α < 1 the size of the second largest component is Θ((log n)1/(1-α)). Our research is motivated by the question raised by Bode, Fountoulakis, and Müller (2013) regarding the uniqueness of linear size components in random hyperbolic graphs, which naturally leads to the question regarding the size of the second largest component. We also show that for α = 2 with constant probability the corresponding size is Θ(log n), whereas for α = 1 it is Ω(nδ) for some δ > 0.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | KIWI-KRAUSKOPF, MARCOS ABRAHAM | Hombre |
Universidad de Chile - Chile
|
| 2 | Mitsche, Dieter | Hombre |
Institut Camille Jordan - Francia
Univ Jean Monnet - Francia |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Millennium Nucleus Information and Coordination in Networks |
| CONICYT via Basal in Applied Mathematics |
| IDEXLYON of Universitéde Lyon |
| IDEXLYON of Universite de Lyon (Programme Investissements d'Avenir) |
| IDEXLYON |
| IDEXLYON of Universite de Lyon |
| Agradecimiento |
|---|
| The first author gratefully acknowledges the support of Millennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F and CONICYT via Basal in Applied Mathematics. The second author has been supported by IDEXLYON of Universite de Lyon (Programme Investissements d'Avenir ANR16-IDEX-0005).*%blankline%* |
| The first author gratefully acknowledges the support of Millennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F and CONICYT via Basal in Applied Mathematics. The second author has been supported by IDEXLYON of Universite de Lyon (Programme Investissements d'Avenir ANR16-IDEX-0005). |