Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10915-018-0810-Y | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We have recently proposed a new finite element method for a more general Boussinesq model in 2D given by the case in which the viscosity of the fluid depends on its temperature. Our approach is based on a pseudostress-velocity-vorticity mixed formulation for the momentum equations, which is suitably augmented with Galerkin-type terms, coupled with the usual primal formulation for the energy equation, along with the introduction of the normal heat flux on the boundary as a Lagrange multiplier taking care of the fact that the prescribed temperature there becomes an essential condition. Then, fixed-point arguments using Banach and Brouwer theorems, in addition to other classical tools from functional and numerical analysis, provide sufficient conditions ensuring well-posedness of the resulting continuous and discrete sytems, together with the corresponding error estimates and associated rates of convergence. In the present work we complement these results with the derivation of a reliable and efficient residual-based a posteriori error estimator for the aforementioned augmented mixed-primal finite element method. Duality techniques, Helmholtz decompositions, and the approximation properties of the Raviart-Thomas and Clement interpolants are applied to obtain a reliable global error indicator. In turn, standard tools including the usual localization technique of bubble functions and inverse inequalities, and a regularity assumption originally utilized in the previous well-posedness and a priori error analyses, are employed to prove its efficiency. In both cases, reliability and efficiency, the estimates are shown at global level. Finally, a reliable fully local and computable a posteriori error estimator induced by the aforementioned one is deduced, and several numerical results illustrating its performance and validating the expected behaviour of the associated adaptive algorithm are reported.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Almonacid, Javier A. | Hombre |
Universidad de Concepción - Chile
|
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad de Concepción - Chile
Universidad del Bío Bío - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondecyt Project |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Universidad de Concepción |
| CONICYT-Chile through the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigación en Computación |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, and Fondecyt Project 1161325; and Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion. |
| This work was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and Fondecyt Project 1161325; and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción. |