Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.EJOR.2019.12.007 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we propose three novel profit-driven strategies for churn prediction. Our proposals extend the ideas of the Minimax Probability Machine, a robust optimization approach for binary classification that maximizes sensitivity and specificity using a probabilistic setting. We adapt this method and other variants to maximize the profit of a retention campaign in the objective function, unlike most profit-based strategies that use profit metrics to choose between classifiers, and/or to define the optimal classification threshold given a probabilistic output. A first approach is developed as a learning machine that does not include a regularization term, and subsequently extended by including the LASSO and Tikhonov regularizers. Experiments on well-known churn prediction datasets show that our proposal leads to the largest profit in comparison with other binary classification techniques.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MALDONADO-ALARCON, SEBASTIAN ALEJANDRO | Hombre |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile ISCI - Chile |
| 2 | LOPEZ-LUIS, JULIO CESAR | Hombre |
Universidad de Los Andes, Chile - Chile
Universidad Diego Portales - Chile |
| 3 | Vairetti, Carla | Mujer |
Universidad Diego Portales - Chile
Instituto Sistemas Complejos de Ingeniería - Chile Universidad de Los Andes, Chile - Chile ISCI - Chile |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| CONICYT PIA/BASAL |
| Agradecimiento |
|---|
| The authors gratefully acknowledge financial support from CONICYT PIA/BASAL AFB180003 and FONDECYT, grants 1160738 and 1160894. The authors are grateful to the anonymous reviewers who contributed to improving the quality of the original paper. |
| The authors gratefully acknowledge financial support from comm. PIA/BASAL AFB180003 and FONDECYT, grants 1160738 and 1160894. The authors are grateful to the anonymous reviewers who contributed to improving the quality of the original paper. |