Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1214/18-EJS1459 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Extending the ideas of [7], this paper aims at providing a kernel based non-parametric estimation of a new class of time varying AR(1) processes (X-t), with local stationarity and periodic features (with a known period T), inducing the definition X-t = a(t)(t/nT)Xt-1 + xi(t) for t is an element of N and with a(t)+T a(t). Central limit theorems are established for kernel estima- tors (a) over cap (s)(u) reaching classical minimax rates and only requiring low order moment conditions of the white noise (xi(t)) t up to the second order.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bardet, Jean-Marc | Hombre |
Univ Pantheon Sorbonne - Francia
Université Paris 1 Panthéon-Sorbonne - Francia |
| 2 | Doukhan, Paul | Hombre |
Univ Cergy Pontoise - Francia
CIMFAV - Chile Universite de Cergy-Pontoise - Francia Laboratoire de mathématiques AGM - Francia |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| PAI-CONICYT MEC |
| MME-DII centre of excellence |
| Agradecimiento |
|---|
| This work has been developed within the "MME-DII centre of excellence" (ANR-11-LABEX-0023-01) and with the help of PAI-CONICYT MEC Nr. 80170072. |
| This work has been developed within the “MME-DII centre of excellence” (ANR-11-LABEX-0023-01) and with the help of PAI- CONICYT MEC Nr. 80170072. |