Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/SCCC49216.2019.8966407 | ||||
| Año | 2019 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In recent years, iris recognition techniques have focused the attention on the biometric area. Particularly, the performance of an iris recognition system depends on the representation of the texture of the images. In this sense, Local Binary Patterns (LBP) have emerged as one of the most prominent and widely studied local texture descriptors. This paper aims to evaluate the use of different LBP-based descriptors for iris recognition by using a Learning Vector Quantization Classifier (LVQ). Our study shows the first analysis of the performance of LVQ classifier on different LBP-based descriptors for iris recognition. Besides, the proposed method evaluates the impact of a parallel implementation of the system under a multi-core platform. The evaluation carried out on the CASIA-Iris-Interval database, shows that LVQ classifier is an effective alternative for iris recognition using LBP-based descriptors. The proposed method achieved a recognition rate of 98.36% and obtaining a speed-up of 24.81x.
| Revista | ISSN |
|---|---|
| 2018 37 Th International Conference Of The Chilean Computer Science Society (Sccc) | 1522-4902 |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Campos, Hernan | - |
Universidad Católica del Maule - Chile
|
| 2 | Hernandez-Garcia, Ruber | - |
Universidad Católica del Maule - Chile
|
| 3 | Barrientos, Ricardo J. | Hombre |
Universidad Católica del Maule - Chile
|
| 4 | IEEE | Corporación |