Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Solving complex problems using model transformations: from set constraint modeling to SAT instance solving
Indexado
WoS WOS:000525819400011
Scopus SCOPUS_ID:85079065460
DOI 10.1016/J.ESWA.2020.113243
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



On the one hand, solvers for the propositional satisfiability problem (SAT) can deal with huge instances composed of millions of variables and clauses. On the other hand, Constraint Satisfaction Problems (CSP) can model problems as constraints over a set of variables with non-empty domains. They require combinatorial search methods as well as heuristics to be solved in a reasonable time. In this article, we present a technique that benefits from both expressive CSP modeling and efficient SAT solving. We model problems as CSP set constraints. Then, a propagation algorithm reduces the domains of variables by removing values that cannot participate in any valid assignment. The reduced CSP set constraints are transformed into a set of suitable SAT instances. They may be simplified by a preprocessing method before applying a standard SAT solver for computing their solutions. The practical usefulness of this technique is illustrated with two well-known problems: a) the Social Golfer, and b) the Sports Tournament Scheduling. We obtained competitive results either compared with ad hoc solvers or with hand-written SAT instances. Compared with direct SAT modeling, the proposed technique offers higher expressiveness, is less error-prone, and is relatively simpler to apply. The automatically generated propositional satisfiability instances are rather small in terms of clauses and variables. Hence, applying the constraint propagation phase, even huge instances of our problems can be tackled and efficiently solved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lardeux, Frederic Hombre Universite d'Angers - Francia
Univ Angers - Francia
Université d’Angers - Francia
2 MONFROY, ERIC BERNARD Hombre Université de Nantes - Francia
Univ Nantes - Francia
Nantes Université - Francia
3 Rodriguez-Tello, Eduardo Hombre CINVESTAV Tamaulipas - México
4 CRAWFORD-LABRIN, BRODERICK Hombre Pontificia Universidad Católica de Valparaíso - Chile
5 SOTO-DE GIORGIS, RICARDO JAVIER Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Secretaría de Educación Pública
Secretaría de Educación Pública
Mexican Secretariat of Public Education under Grant SEP-Cinvestav (2019-2020)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The Mexican Secretariat of Public Education has partially supported the research of the third author under Grant SEP- Cinvestav (2019-2020) no. 00114 .
The Mexican Secretariat of Public Education has partially supported the research of the third author under Grant SEP-Cinvestav (2019-2020) no. 00114

Muestra la fuente de financiamiento declarada en la publicación.