Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Rapid sequence matching for visualization recommender systems
Indexado
Scopus SCOPUS_ID:85079435289
DOI
Año 2019
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We present a method to support high quality visualization recommendations for analytic tasks. Visualization converts large datasets into images that allow viewers to efficiently explore, discover, and validate within their data. Visualization recommenders have been proposed that store past sequences: an ordered collection of design choices leading to successful task completion; then match them against an ongoing visualization construction. Based on this matching, a system recommends visualizations that better support the analysts' tasks. A problem of scalability occurs when many sequences are stored. One solution would be to index the sequence database. However, during matching we require sequences that are similar to the partially constructed visualization, not only those that are identical. We implement a locality sensitive hashing algorithm that converts visualizations into set representations, then uses Jaccard similarity to store similar sequence nodes in common hash buckets. This allows us to match partial sequences against a database containing tens of thousands of full sequences in less than 100 ms. Experiments show that our algorithm locates 95% or more of the sequences found in an exhaustive search, producing high-quality visualization recommendations.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Graphics And Computer Aided Design
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Nie, Shaoliang - North Carolina State University - Estados Unidos
NC State University - Estados Unidos
2 Healey, Christopher G. Hombre North Carolina State University - Estados Unidos
NC State University - Estados Unidos
3 Chirkova, Rada Y. Mujer North Carolina State University - Estados Unidos
NC State University - Estados Unidos
4 Reutter, Juan L. Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.